Online Limited Memory Neural-Linear Bandits with Likelihood Matching

Ofir Nabati¹, Tom Zahavy^{1,2} and Shie Mannor^{1,3}
ICML 2021

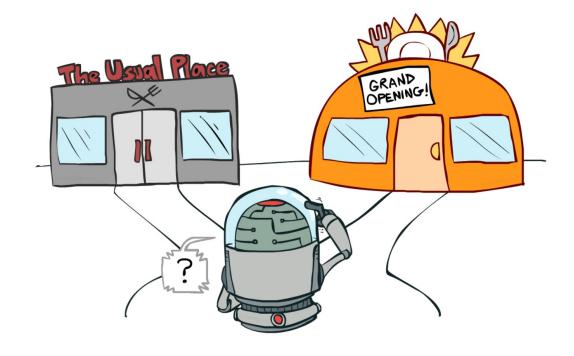
¹Technion, Israel Institute of Technology

²DeepMind

³Nvidia Research

Exploration with Neural Networks

- Dropout
- Bootstraping
- ϵ -greedy
- Monte Carlo methods
- Direct Noise Injection
- Variational Auto Encoders
- Neural Linear
- + Memory constraints!



Contextual Linear Bandits

- Every round we get a context b(t)
- We choose an action.
- Get a reward $r_i(t)$

Goal: receive the highest total reward after *T* rounds.

The expected reward for each action is a linear function

$$\mathbb{E}[r_i(t)|b(t)] = b(t)^{\mathsf{T}}\mu_i, \qquad i = 1,2,3,...,N$$

Thompson Sampling (TS)

Algorithm 1 TS for linear contextual bandits

$$\forall i \in [1, ..., N], \text{ set } \Phi_i = 0, \Phi_i^0 = I_d, \hat{\mu}_i = 0_d, \psi_i = 0_d$$

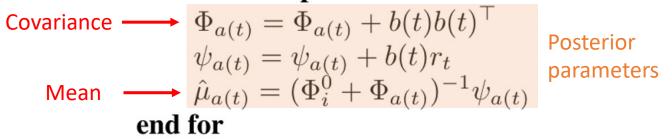
for $t = 1, 2, ...,$ **do**
 $\forall i \in [1, ..., N], \text{ sample } \tilde{\mu_i} \sim N(\hat{\mu_i}, \nu^2(\Phi_i^0 + \Phi_i)^{-1})$

Posterior sampling

Play arm $a(t) := \operatorname{argmax}_i b(t)^{\top} \tilde{\mu_i}$

Observe reward r_t

Posterior update:



Agrawal, Shipra, and Navin Goyal. "Thompson sampling for contextual bandits with linear payoffs." International Conference on Machine Learning. PMLR, 2013.

Neural Linear Bandits

 Linear exploration policy (TS) on top of the last hidden layer of a neural network

$$\phi(t) = LastNetworkLayer(b(t))$$

- Network is trained in phases to predict rewards.
- State-of-the-art method.
- Assumption: $\mathbb{E}[r_i(t)|\phi(t)] = \phi(t)^T \mu_i$
- Every time the representation is changed, recompute the posterior.
- Memory is unlimited.
- Priors are fixed: $\Phi^0 = I$, $\mu^0 = 0$

Limited Memory Case: Catastrophic Forgetting

- Memory size is <u>limited</u>.
- Each representation update, there is an information loss.
- This causes performance degradation.

The Big Quesiton:

How to solve representation drift without suffering from catastrophic forgetting?

Our Solution:

Limited Memory Neural Bandits with Likelihood Matching (LiM2)

Likelihood Matching

- We want to preserve past information before the update.
- We store the information at the posterior's priors Φ_i^0 and μ_i^0 under the new representation.

This is done by matching the likelihood of the reward before and after the updates:

Find priors Φ_i^0 and $\hat{\mu}_i^0$ such that $\forall b_j \in Memory$ with action i:

Variance matching: $\phi_j^{old}(t)^{\top} (\Phi_i^{old})^{-1} \phi_j^{old}(t) = \phi_j^{new}(t)^{\top} (\Phi_i^0)^{-1} \phi_j^{new}(t)$ $S_{i,j}^2$ Mean matching: $\phi_j^{old}(t)^{\top} \hat{\mu}_i^{old} = \phi_j^{new}(t)^{\top} \hat{\mu}_i^0$

Likelihood Matching

Find priors
$$\Phi_i^0$$
 and $\hat{\mu}_i^0$ such that $\forall b_j \in Memory$ with action i:

Variance matching:
$$\phi_j^{old}(t)^{\mathsf{T}} (\Phi_i^{old})^{-1} \phi_j^{old}(t) = \phi_j^{new}(t)^{\mathsf{T}} (\Phi_i^0)^{-1} \phi_j^{new}(t)$$

$$\frac{s_{j,i}^2}{\text{Mean matching:}} \phi_j^{old}(t)^{\mathsf{T}} \hat{\mu}_i^{old} = \phi_j^{new}(t)^{\mathsf{T}} \hat{\mu}_i^0$$

Computing Φ_i^0 via SDP:

$$\underset{(\Phi_{i}^{0})^{-1}}{\text{minimize}} \sum\nolimits_{j=1}^{n_{i}} \left(\text{Trace}(X_{j,i}^{\top}(\Phi_{i}^{0})^{-1}) - s_{j,i}^{2} \right)^{2}$$

subject to
$$(\Phi_i^0)^{-1} \succeq 0$$
.

where $X_{j,i} \triangleq \phi_j \phi_j^{\mathsf{T}}$

Computing $\hat{\mu}_{i}^{0}$: taking the weights of the last layer makes a good prior.

Solving the SDP

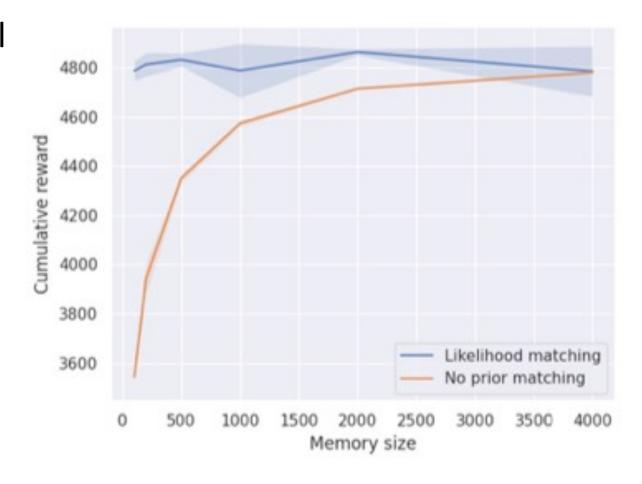
- Computationally prohibitive.
- We solve the SDP by applying stochastic gradient decent (SGD).
- Project the covariance matrix back to PSD space by eigenvalues thresholding.
- We can use the same batch for network training and likelihood matching!
- Online mode applying only one iteration each round.

Results - Catastrophic Forgetting

- LiM2 eliminates catastrophic forgetting.
- Naive approach suffers from degradation each network update.

Results – Memory Size

- Naive approach does not cope well with limited memory.
- LiM2 is robust to memory size.

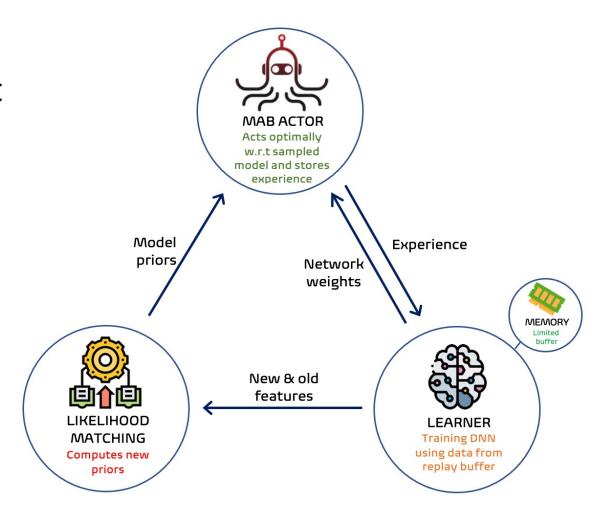


Results – Real Datasets

			Full memory		Limited memory			NTK based		
Name	d	Α	LinearTS	NeuralLinear	LiM2 (Ours)	NeuralLinear-MM	NeuralLinear-Naive	NeuralUCB	NeuralTS	NeuralLinear-NTK
Mushroom	117	2	1.000	0.985	0.945	0.719	0.730	0.521	0.521	0.941
Financial	21	8	0.997	0.946	1.000	0.743	0.723	0.292	0.228	0.959
Jester	32	8	1.000	0.784	0.819	0.287	0.234	0.546	0.546	0.768
Adult	88	2	0.977	0.974	1.000	0.638	0.634	0.822	0.823	0.966
Covertype	54	7	1.000	0.902	0.892	0.679	0.693	0.514	0.517	0.887
Census	377	9	0.548	0.860	1.000	0.679	0.686	0.644	0.603	0.863
Statlog	9	7	0.912	0.978	1.000	0.933	0.916	0.818	0.885	0.976
Epileptic	178	5	0.282	1.000	0.684	0.562	0.504	0.019	0.020	0.589
Smartphones	561	6	0.649	0.970	1.000	0.521	0.515	0.396	0.670	0.965
Scania Trucks	170	2	0.181	0.672	0.745	-0.344	-0.050	0.988	1.000	0.259
Amazon	7K	5	-	0.986	1.000	0.873	0.879	-	-	0.981
Average			0.755	0.914	0.917	0.572	0.588	0.556	0.581	0.832
Median			0.945	0.970	1.000	0.679	0.686	0.534	0.575	0.941

Conclusions

- In order to use limited memory without suffering from catastrophic forgetting LiM2 provides a good robust solution.
- No significant additional computational burden.
- LiM2 enables to operate online.



Thank you!

Contact mail: ofirnabati@gmail.com

For more information see our paper