
Online Limited Memory Neural-Linear
Bandits with Likelihood Matching

Ofir Nabati1, Tom Zahavy1,2 and Shie Mannor1,3

1Technion, Israel Institute of Technology
2DeepMind
3Nvidia Research

ICML 2021

Exploration with Neural Networks
• Dropout
• Bootstraping
• 𝜖-greedy
• Monte Carlo methods
• Direct Noise Injection
• Variational Auto Encoders
• Neural Linear + Memory constraints!

Contextual Linear Bandits
• Every round we get a context 𝑏 𝑡
• We choose an action.
• Get a reward 𝑟!(𝑡)
• The expected reward for each action is a linear function

𝔼 𝑟! 𝑡 |𝑏(𝑡) = 𝑏 𝑡 "𝜇! , 𝑖 = 1,2,3, … , 𝑁

Goal: receive the highest total reward
after 𝑇 rounds.

Thompson Sampling (TS)

Agrawal, Shipra, and Navin Goyal. "Thompson sampling for contextual bandits with linear payoffs." International Conference
on Machine Learning. PMLR, 2013.

Posterior
parameters

Posterior sampling

Covariance

Mean

Neural Linear Bandits
• Linear exploration policy (TS) on top of the last hidden layer of a

neural network
𝜙 𝑡 = 𝐿𝑎𝑠𝑡𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐿𝑎𝑦𝑒𝑟(𝑏 𝑡)

• Network is trained in phases to predict rewards.
• State-of-the-art method.
• Assumption: 𝔼 𝑟! 𝑡 |𝜙 (𝑡) = 𝜙 𝑡 "𝜇!
• Every time the representation is changed, recompute the posterior.
• Memory is unlimited.
• Priors are fixed: Φ# = 𝐼, 𝜇# = 0

Riquelme, C., Tucker, G., and Snoek, J. “Deep Bayesian bandits showdown.” International Conference on Learning
Representations, 2018.

Limited Memory Case: Catastrophic Forgetting

• Memory size is limited.
• Each representation update, there is an information loss.
• This causes performance degradation.

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural
networks." Proceedings of the national academy of sciences 114.13 (2017): 3521-3526.

The Big Quesiton:

How to solve representation drift without suffering from
catastrophic forgetting?

Our Solution:

Limited Memory Neural Bandits with Likelihood
Matching (LiM2)

Likelihood Matching

• We want to preserve past information before the update.
• We store the information at the posterior’s priors Φ!

and 𝜇!# under
the new representation.

This is done by matching the likelihood of the reward before and after
the updates:

Find		priors	 Φ!
# and	 I𝜇!# such	that		∀𝑏$ ∈ 𝑀𝑒𝑚𝑜𝑟𝑦 𝑤𝑖𝑡ℎ 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖:

Variance matching: 𝜙$%&' 𝑡 " Φ!
%&' ()

𝜙$%&' 𝑡 = 𝜙$*+, 𝑡 " Φ!
()𝜙$*+, 𝑡

Mean matching: 𝜙$%&' 𝑡 " I𝜇!%&' = 𝜙$*+, 𝑡 " I𝜇!#
𝑠!,$.

Computing Φ!
via SDP:

where 𝑋$,! ≜ 𝜙$𝜙$"

Computing I𝜇!#: taking the weights of the last layer makes a good prior.

Find		priors	 Φ!
" and	 :𝜇!" such	that	 ∀𝑏# ∈ 𝑀𝑒𝑚𝑜𝑟𝑦 𝑤𝑖𝑡ℎ 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖:

Variance matching: 𝜙#$%& 𝑡 ' Φ!
$%& ()

𝜙#$%& 𝑡 = 𝜙#*+, 𝑡 ' Φ!
" ()

𝜙#*+, 𝑡

Mean matching: 𝜙#$%& 𝑡 ' :𝜇!$%& = 𝜙#*+, 𝑡 ' :𝜇!"
𝑠#,!.

Likelihood Matching

Solving the SDP

• Computationally prohibitive.
• We solve the SDP by applying stochastic gradient decent (SGD).
• Project the covariance matrix back to PSD space by eigenvalues thresholding.
• We can use the same batch for network training and likelihood matching!
• Online mode - applying only one iteration each round.

Results - Catastrophic Forgetting

• LiM2 eliminates catastrophic forgetting.
• Naive approach suffers from degradation each network update.

Results – Memory Size
• Naive approach does not cope well

with limited memory.
• LiM2 is robust to memory size.

Results – Real Datasets

Conclusions
• In order to use limited memory without

suffering from catastrophic forgetting –
LiM2 provides a good robust solution.
• No significant additional computational

burden.
• LiM2 enables to operate online.

Thank you!
Contact mail: ofirnabati@gmail.com
For more information see our paper

mailto:ofirnabati@gmail.com

