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Exploration with Neural Networks
• Dropout
• Bootstraping
• 𝜖-greedy 
• Monte Carlo methods
• Direct Noise Injection
• Variational Auto Encoders
• Neural Linear + Memory constraints!



Contextual Linear Bandits
• Every round we get a context 𝑏 𝑡
• We choose an action.
• Get a reward 𝑟!(𝑡)
• The expected reward for each action is a linear function

𝔼 𝑟! 𝑡 |𝑏(𝑡) = 𝑏 𝑡 "𝜇! , 𝑖 = 1,2,3, … , 𝑁

Goal: receive the highest total reward 
after 𝑇 rounds.



Thompson Sampling (TS)

Agrawal, Shipra, and Navin Goyal. "Thompson sampling for contextual bandits with linear payoffs." International Conference 
on Machine Learning. PMLR, 2013.
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Neural Linear Bandits
• Linear exploration policy (TS) on top of the last hidden layer of a 

neural network
𝜙 𝑡 = 𝐿𝑎𝑠𝑡𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐿𝑎𝑦𝑒𝑟(𝑏 𝑡 )

• Network is trained in phases to predict rewards. 
• State-of-the-art method. 
• Assumption: 𝔼 𝑟! 𝑡 |𝜙 (𝑡) = 𝜙 𝑡 "𝜇!
• Every time the representation is changed, recompute the posterior.   
• Memory is unlimited. 
• Priors are fixed: Φ# = 𝐼, 𝜇# = 0

Riquelme, C., Tucker, G., and Snoek, J. “Deep Bayesian bandits showdown.” International Conference on Learning 
Representations, 2018. 



Limited Memory Case: Catastrophic Forgetting

• Memory size is limited.
• Each representation update, there is an information loss.
• This causes performance degradation.   

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural 
networks." Proceedings of the national academy of sciences 114.13 (2017): 3521-3526.



The Big Quesiton:

How to solve representation drift without suffering from 
catastrophic forgetting? 

Our Solution:

Limited Memory Neural Bandits with Likelihood 
Matching (LiM2)



Likelihood Matching

• We want to preserve past information before the update.
• We store the information at the posterior’s priors Φ!

# and 𝜇!# under 
the new representation.

This is done by matching the likelihood of the reward before and after 
the updates:

Find		priors	 Φ!
# and	 I𝜇!# such	that		∀𝑏$ ∈ 𝑀𝑒𝑚𝑜𝑟𝑦 𝑤𝑖𝑡ℎ 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖:

Variance matching: 𝜙$%&' 𝑡 " Φ!
%&' ()

𝜙$%&' 𝑡 = 𝜙$*+, 𝑡 " Φ!
# ()𝜙$*+, 𝑡

Mean matching: 𝜙$%&' 𝑡 " I𝜇!%&' = 𝜙$*+, 𝑡 " I𝜇!#
𝑠!,$.



Computing Φ!
# via SDP: 

where  𝑋$,! ≜ 𝜙$𝜙$"

Computing I𝜇!#: taking the weights of the last layer makes a good prior.

Find		priors	 Φ!
" and	 :𝜇!" such	that	 ∀𝑏# ∈ 𝑀𝑒𝑚𝑜𝑟𝑦 𝑤𝑖𝑡ℎ 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖:

Variance matching: 𝜙#$%& 𝑡 ' Φ!
$%& ()

𝜙#$%& 𝑡 = 𝜙#*+, 𝑡 ' Φ!
" ()

𝜙#*+, 𝑡

Mean matching: 𝜙#$%& 𝑡 ' :𝜇!$%& = 𝜙#*+, 𝑡 ' :𝜇!"
𝑠#,!.

Likelihood Matching



Solving the SDP

• Computationally prohibitive.
• We solve the SDP by applying stochastic gradient decent (SGD).
• Project the covariance matrix back to PSD space by eigenvalues thresholding.
• We can use the same batch for network training and likelihood matching!
• Online mode - applying only one iteration each round.



Results - Catastrophic Forgetting 

• LiM2 eliminates catastrophic forgetting.
• Naive approach suffers from degradation each network update. 



Results – Memory Size
• Naive approach does not cope well 

with limited memory.
• LiM2 is robust to memory size.



Results – Real Datasets 



Conclusions 
• In order to use limited memory without 

suffering from catastrophic forgetting –
LiM2 provides a good robust solution. 
• No significant additional computational 

burden.
• LiM2 enables to operate online.
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