Learning Randomly Perturbed Structured Predictors for Direct Loss Minimization

Hedda Cohen Indelman, Tamir Hazan
The Technion

Motivation

Motivation

- Learn to predict structured labels $y \in Y$ (matchings, permutations etc.) of data instances $x \in X$.
- The parameters of a scoring function $\mu_w(x, y)$ are fitted to minimize the loss $\ell(y, y_w^*)$ between the label y and the highest scoring structure

Challenges in discrete labels

• The maximal argument of $\mu_w(x,y)$ is a piecewise constant function of w, and its gradient with respect to w is zero for almost any w.

• Let y_w^* be the highest scoring structure

$$y_w^* = \arg\max_{\hat{y} \in Y} \{\mu_w(x, \hat{y})\}\$$

Direct loss minimization (Hazan et al., 2010) aims at minimizing the expected loss:

$$\min_{w} E_{(x,y)\sim D} \ell(y_{w}^{*}, y)$$

• A loss-perturbed predictor $y_w^*(\epsilon)$ is introduced:

$$y_w^*(\epsilon) = \arg\max_{\hat{y} \in Y} \{ \mu_w(x, \hat{y}) + \epsilon \ell(\hat{y}, y) \}$$

and the corresponding gradient estimator takes the following form:

$$\nabla_{w} E[\ell(y, y_{w}^{*})] = \lim_{\epsilon \to 0} \frac{1}{\epsilon} E_{(x,y) \sim D} \left[\nabla_{w} \mu_{w}(x, y_{w}^{*}(\epsilon)) - \nabla_{w} \mu_{w}(x, y_{w}^{*}) \right]$$

- When $\epsilon < 0$, $y_w^*(\epsilon)$ returns the label with a lower loss and the gradient resembles a "moving towards better" step.
- When $\epsilon > 0$, $y_w^*(\epsilon)$ returns the label with a higher loss and the gradient resembles a "moving away from bad" step.

1. A "general position assumption" was defined so that $w \neq 0$.

We identify that the underlying requirement is that the maximizing structure is unique.

2. It assumes smoothness of the data distribution *D*

Injecting noise

- Adding smooth random noise $\gamma(y)$ to $\mu_w(x,y)$ induces a probability distribution over structures y.
- [Lorberbom et al. 2018] The corresponding gradient estimator in discriminative learning setting, takes the form:

$$y_{w,\gamma}^* = \arg\max_{\hat{y} \in Y} \{\mu_w(x,\hat{y}) + \gamma(\hat{y})\}$$

$$y_{w,\gamma}^*(\epsilon) = \arg\max_{\hat{y} \in Y} \{\mu_w(x,\hat{y}) + \gamma(\hat{y}) + \epsilon\ell(\hat{y},y)\}$$

$$\nabla_w E_{\gamma} [\ell(y,y_{w,\gamma}^*)] = \lim_{\epsilon \to 0} \frac{1}{\epsilon} E_{\gamma \sim g} [\nabla_w \mu_w(x,y_{w,\gamma}^*(\epsilon)) - \nabla_w \mu_w(x,y_{w,\gamma}^*)]$$

Our contributions

Noise variance in direct loss minimization

- The random perturbation that smooths the objective might also serve as noise that masks the signal $\mu_w(x,y)$. To address this caveat, we learn its variance.
- By reparametrization:

$$y_{w,\gamma,v}^* = \arg\max_{\hat{y} \in Y} \{\mu_w(x,\hat{y}) + \sigma_v(x)\gamma(\hat{y})\}$$

Connection to temperature Gumbel-max trick

• We prove that when $\gamma_i(y_i)$ are i.i.d. random variables sampled from the standard Gumbel distribution, $y_{w,\gamma}^*$ is distributed according to the Gibbs distribution, defined by the **signal-to-noise** ratio:

$$P_{\gamma \sim g} \left[\arg \max_{\hat{y} \in Y} \left\{ \mu_w(x, \hat{y}) + \sigma(x) \gamma(\hat{y}) \right\} \right] \propto e^{\mu_w(x, y) / \sigma(x)}$$

• Thus, we make the connection between $\sigma(x)$ and temperature t in Gumbel-Softmax models.

Extending for the high-dimensional set-up

- In high-dimensional structured prediction, the number of possible structures is exponential in n.
- Scoring and sampling a noise random variable for each possible structure might be computationally intractable.

Integrating noise variance learning in direct loss minimization theorem

- We aim to learn the balance between the mean score of the randomized predictor, namely $\sum_{\alpha \in A} \mu_{w,\alpha}(x,y_{\alpha})$, and the variance of its noise $\sum_{i=1}^{n} \gamma_{i}(\widehat{y}_{i})$.
- We reparameterize the randomized predictor:

$$y_{w,\gamma,v}^* \in \arg\max_{\widehat{y} \in Y} \{ \sum_{\alpha \in A} \mu_{w,\alpha}(x,\widehat{y_\alpha}) + \sigma_{v}(x) \sum_{i=1}^{N} \gamma_i(\widehat{y_i}) \}$$

• And define the loss-perturbed randomized predictor:

$$y_{w,\gamma,v}^*(\epsilon) \in arg \max_{\widehat{y} \in Y} \left\{ \sum_{\alpha \in A} \mu_{w,\alpha}(x,\widehat{y_\alpha}) + \sigma_v(x) \sum_{i=1}^{N} \gamma_i(\widehat{y_i}) + \epsilon \ell(y,\widehat{y}) \right\}$$

Integrating noise variance learning in direct loss minimization theorem

• The expected loss derivatives are:

$$\nabla_{w} E_{\gamma} \left[\ell \left(y, y_{w,\gamma,v}^{*} \right) \right] = \lim_{\epsilon \to 0} \frac{1}{\epsilon} E_{\gamma} \left[\sum_{\alpha \in A} \nabla_{w} \mu_{w,\alpha} \left(x, y_{\alpha}^{*}(\epsilon) \right) - \nabla_{w} \mu_{w,\alpha} (x, y_{\alpha}^{*}) \right]$$

$$\nabla_{v} E_{\gamma} \left[\ell \left(y, y_{w,\gamma,v}^{*} \right) \right] = \lim_{\epsilon \to 0} \frac{1}{\epsilon} E_{\gamma} \left[\sum_{i=1}^{n} \nabla_{v} \sigma_{v}(x) (\gamma_{i}(y_{i}^{*}(\epsilon)) - \gamma_{i}(y_{i}^{*})) \right]$$

Noise perturbation guarantees unique maximizers

• Theorem: Let $\gamma_i(y_i)$ be i.i.d random variables with a smooth probability density function. Then the set of maximal arguments of

$$y_{w,\gamma,v}^* = \arg\max_{\hat{y} \in Y} \left\{ \sum_{\alpha \in A} \mu_{w,\alpha}(x, y_\alpha) + \sigma_{v}(x) \sum_{i=1}^n \gamma_i(y_i) \right\}$$

consists of a single structure with probability one for any $\gamma(y)$.

Experiments

- We validate the advantage of our approach in two popular structured prediction problems: bipartite matching and k-nearest neighbors.
- We compare to:
 - Direct loss minimization ($\overline{var} = 0$)
 - Lorberbom et al., 2018 ($\overline{var} = 1$)
 - State-of-the-art bipartite matching [Mena et al., 2018].
 - State-of-the-art neural sorting [Grover et al.,2019, Xie and Ermon, 2019].