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Motivation



Motivation

* Learn to predict structured labels y € Y (matchings, permutations etc.) of
data instances x € X.

* The parameters of a scoring function u,, (x, y) are fitted to minimize the loss
£(y, y,,) between the label y and the highest scoring structure



Challenges in discrete labels

* The maximal argument of u,, (x, y) is a piecewise constant function of w,
and its gradient with respect to w is zero for almost any w.
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Direct loss minimization



Direct loss minimization

* Let y,, be the highest scoring structure
Yw = argmax {u, (x,¥)}

Direct loss minimization (Hazan et al., 2010) aims at minimizing the expected
loss:

min E(y )~ p £V, ¥)



Direct loss minimization

* A loss-perturbed predictor y,, (€) is introduced:
Yw(€) = argmax i, (x,y) + €£(y, )}

and the corresponding gradient estimator takes the following form:

VWE[f(y: yvﬂ;/)] — li_r)%EE(x,y)~D [Vw.uw(xr yvﬂ;/(E)) R Vw.uw(x: va/)]

* When € < 0, y,,,(€) returns the label with a lower loss and the gradient
resembles a “moving towards better” step.

* When € > 0, y,,,(€) returns the label with a higher loss and the gradient
resembles a “moving away from bad” step.



Direct loss minimization

1. A “general position assumption” was defined so that w # 0.

We identify that the underlying requirement is that the maximizing structure
IS unique.

2. It assumes smoothness of the data distribution D



Injecting noise

* Adding smooth random noise y(y) to u,,(x, y) induces a probability distribution
over structures y.

* [Lorberbom et al. 2018] The corresponding gradient estimator in discriminative
learning setting, takes the form:

Ywy = argmax {iy,(x,y) +v(3)}
Ywy (€) = argmax {u, (x,y) +y () + e£(¥, )}

VwEy [£(y, Yy )| = im = By g [Vt (5, vy (€0) = Rty (3, 3]



Our contributions



Noise variance in direct loss minimization

 The random perturbation that smooths the objective might also serve as noise
that masks the signal u,,(x,y ). To address this caveat, we learn its variance.

* By reparametrization:
Ywyw = argmax {u, (x,¥) + o, (x)y (9)}



Connection to temperature Gumbel-max trick

* We prove that when y;(y;) are i.i.d. random variables sampled from the
standard Gumbel distribution, yy, ., is distributed according to the Gibbs
distribution, defined by the signal-to-noise ratio:

5 )} = i (x3)/0(x)
Fy~g [argmax (i, (x,9) + 0y ()} =y|xe

* Thus, we make the connection between o(x) and temperature t in Gumbel-
Softmax models.



Extending for the high-dimensional set-up

* In high-dimensional structured prediction, the number of possible structures is
exponential in n.

* Scoring and sampling a noise random variable for each possible structure
might be computationally intractable .



Integrating noise variance learning in direct
loss minimization theorem

 We aim to learn the balance between the mean score of the randomized predictor,
namely Y qea tw o (X, ¥o) , and the variance of its noise Y.i—; v; (77;) -

* We reparameterize the randomized predictor:

Ywyv € arg e {z tw.a (X, ¥q) + 0y (%) 2 Yi(Vi) }

aeA
* And define the loss-perturbed randomized predictor:

Voyn(© € argmax () iha(n7e) +0,(x) 2 Vi) + et(,9)

a€EA



Integrating noise variance learning in direct
loss minimization theorem

* The expected loss derivatlves are:

VwEy[€(3, yiy0)| = lim EE Vb, (%, Y2 (€)) — Viybun, (%, Vi) ]
aEA

Vo Ey [£(y, Yooy )] = 1im < By [S1 %0, () (i (07 (€)) = vi7)]



Noise perturbation guarantees unique
maximizers

* Theorem: Let y;(y;) be i.i.d random variables with a smooth probability
density function. Then the set of maximal arguments of

Ywyw = AGMAX (Yaea bw,a (X, Ya) + 0v() Liz1 vi(V1)}

consists of a single structure with probability one for any y(y).



Experiments

* We validate the advantage of our approach in two popular structured
prediction problems: bipartite matching and k-nearest neighbors.
* We compare to:
* Direct loss minimization (var = 0)
* Lorberbom et al., 2018 (var = 1)
 State-of-the-art bipartite matching [Mena et al., 2018].

e State-of-the-art neural sorting [Grover et al.,2019, Xie and Ermon,
2019].



