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Motivation



Motivation

• Learn to predict structured labels 𝑦 ∈ 𝑌 (matchings, permutations etc.) of 
data instances x ∈ 𝑋.
• The parameters of a scoring function 𝜇( 𝑥, 𝑦 are fitted to minimize the loss 
ℓ(𝑦, 𝑦(∗ ) between the label 𝑦 and the highest scoring structure
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Challenges in discrete labels

• The maximal argument of 𝜇( 𝑥, 𝑦 is a piecewise constant function of 𝑤, 
and its gradient with respect to 𝑤 is zero for almost any 𝑤.



Direct loss minimization



Direct loss minimization

• Let 𝑦(∗ be the highest scoring structure
𝑦(∗ = argmax

/7∈8
{𝜇( 𝑥, /𝑦 }

Direct loss minimization (Hazan et al., 2010) aims at minimizing the expected 
loss:  

min
(
Ε >,7 ∼@ ℓ 𝑦(∗ , 𝑦



Direct loss minimization

• A loss-perturbed predictor 𝑦(∗ 𝜖 is introduced:
𝑦(∗ (𝜖) = argmax

/7∈8
{𝜇((𝑥, /𝑦) + 𝜖ℓ(/𝑦, 𝑦)}

and the corresponding gradient estimator takes the following form:

𝛻(𝐸 ℓ 𝑦, 𝑦(∗ = lim
F→H

1
𝜖 𝐸 >,7 ∼@ [𝛻(𝜇((𝑥, 𝑦(∗ 𝜖 ) − 𝛻(𝜇( 𝑥, 𝑦(∗ ]

• When 𝜖 < 0, 𝑦(∗ 𝜖 returns the label with a lower loss and the gradient 
resembles a “moving towards better” step. 
• When 𝜖 > 0, 𝑦(∗ 𝜖 returns the label with a higher loss and the gradient 

resembles a “moving away from bad” step.



Direct loss minimization

1. A “general position assumption” was deSined so that 𝑤 ≠ 0.
We identify that the underlying requirement is that the maximizing structure 
is unique.
2. It assumes smoothness of the data distribution 𝐷



Injecting noise

• Adding smooth random noise  𝛾(𝑦) to 𝜇( 𝑥, 𝑦 induces a probability distribuOon
over structures 𝑦.

• [Lorberbom et al. 2018] The corresponding gradient estimator in discriminative 
learning setting, takes the form:

𝑦(,Z∗ = argmax
/7∈8

{𝜇( 𝑥, /𝑦 + 𝛾(/𝑦)}

𝑦(,Z∗ (𝜖) = argmax
/7∈8

{𝜇((𝑥, /𝑦) + 𝛾 /𝑦 + 𝜖ℓ(/𝑦, 𝑦)}

𝛻(𝐸Z ℓ 𝑦, 𝑦(,Z∗ = lim
F→H

1
𝜖 𝐸Z∼[ [𝛻(𝜇((𝑥, 𝑦(,Z

∗ 𝜖 ) − 𝛻(𝜇( 𝑥, 𝑦(,Z∗ ]



Our contributions



Noise variance in direct loss minimization

• The random perturbation that smooths the objective might also serve as noise 
that masks the signal 𝜇( 𝑥, 𝑦 . To address this caveat, we learn its variance.
• By reparametrization:

𝑦(,Z,𝒗∗ = argmax
/7∈8

{𝜇( 𝑥, /𝑦 + 𝝈𝒗(𝒙)𝛾( /𝑦)}



Connection to temperature Gumbel-max trick

• We prove that when 𝛾_ 𝑦_ are i.i.d. random variables sampled from the 
standard Gumbel distribution, 𝑦(,Z∗ is distributed according to the Gibbs 
distribution, defined by the signal-to-noise ratio:

𝑃Z∼[ argmax
/7∈8

{𝜇( 𝑥, /𝑦 + 𝜎(𝑥)𝛾( /𝑦)} = 𝑦 ∝ 𝑒𝝁𝒘(𝒙,𝒚)/𝝈(𝒙)

• Thus, we make the connection between 𝜎 𝑥 and temperature 𝑡 in Gumbel-
Softmax models.



Extending for the high-dimensional set-up
• In high-dimensional structured prediction, the number of possible structures is 

exponential in 𝑛.
• Scoring and sampling a noise random variable for each possible structure 

might be computationally intractable .



Integrating noise variance learning in direct 
loss minimization theorem

• We aim to learn the balance between the mean score of the randomized predictor, 
namely ∑k∈l 𝜇(,k(𝑥, 𝑦k) , and the variance of its noise ∑_mno 𝛾_(p𝑦_) .
• We reparameterize the randomized predictor:

𝑦(,Z,𝒗∗ ∈ argmax
/7∈8

{q
k∈l

𝜇(,k 𝑥, r𝑦k + σt x q
_mn

o

𝛾_(p𝑦_) }

• And define the loss-perturbed randomized predictor:

𝑦(,Z,𝒗∗ (ϵ) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
/7∈8

{q
k∈l

𝜇(,k 𝑥, r𝑦k + 𝜎z 𝑥 q
_mn

o

𝛾_(p𝑦_) + 𝜖ℓ 𝑦, /𝑦 }



Integrating noise variance learning in direct 
loss minimization theorem

• The expected loss derivatives are:

𝛻(𝐸Z ℓ 𝑦, 𝑦(,Z,z∗ = lim
F→H

1
𝜖 𝐸Z[q

k∈l

𝛻(𝜇(,k 𝑥, 𝑦k∗ 𝜖 − 𝛻(𝜇(,k(𝑥, 𝑦k∗) ]

𝛻z𝐸Z ℓ 𝑦, 𝑦(,Z,z∗ = lim
F→H

n
F
𝐸Z[∑_mno 𝛻z𝜎z 𝑥 (𝛾_(𝑦_∗ 𝜖 ) − 𝛾_ 𝑦_∗) ]



Noise perturbation guarantees unique 
maximizers

• Theorem: Let 𝛾{ 𝑦{ 𝑏𝑒 𝑖. 𝑖. 𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤𝑖𝑡ℎ a smooth probability 
density function. Then the set of  maximal arguments of  

𝑦(,Z,𝒗∗ = argmax
/7∈8

{∑k∈l 𝜇(,k(𝑥, 𝑦k) + σt x ∑_mno 𝛾_(𝑦_)}

consists of  a single structure with probability one for any 𝛾 𝑦 .



Experiments

• We validate the advantage of our approach in two popular structured 
prediction problems: bipartite matching and k-nearest neighbors.
• We compare to:
• Direct loss minimization (𝑣𝑎𝑟 = 0)
• Lorberbom et al., 2018 (𝑣𝑎𝑟 = 1)
• State-of-the-art bipartite matching [Mena et al., 2018].
• State-of-the-art neural sorting [Grover et al.,2019, Xie and Ermon, 

2019].


