Weight-Covariance Alignment for Adversarially Robust Neural Networks

Panagiotis Eustratiadis¹ Henry Gouk¹ Da Li^{1,2} Timothy Hospedales^{1,2}

¹School of Informatics, University of Edinburgh

²Samsung AI Center, Cambridge

Contributions

- We contribute a Stochastic Neural Network (SNN) for adversarial robustness
 - Trained on clean samples only
 - Using anisotropic noise
- We derive a theoretic bound for the margin between clean and adversarial performance
 - We propose a simple technical implementation for tightening that bound

Weight-Covariance Alignment (WCA)

Our SNN architecture:

$$h(\vec{x}) = \vec{w}^{T}(f(\vec{x}) + \vec{z}) + b, \quad \vec{z} \sim \mathcal{N}(0, \Sigma)$$
(1)

 $f(\vec{x}) \longrightarrow$ any feature extractor (e.g., ResNet, VGG, etc.)

The theoretic bound:

$$G^{h}_{
ho,\epsilon}(ec{x}, y) \leq rac{\Delta^{ar{h}}_{
ho}(ec{x}, \epsilon)}{\sqrt{2\pi ec{w}^T \Sigma ec{w}}}$$
 (2)

 $G^h_{\rho,\epsilon}(\vec{x}, y) \longrightarrow$ the difference in probability of misclassification when the network is, and isn't under attack

 $\Delta_{\rho}^{\tilde{h}}(\vec{x},\epsilon) \longrightarrow$ the magnitude by which an adversarial perturbation, δ , causes the output of \tilde{h} to change

WCA as a Loss Term

$$G^{h}_{p,\epsilon}(\vec{x},y) \leq rac{\Delta^{\widetilde{h}}_{p}(\vec{x},\epsilon)}{\sqrt{2\pi ec{w}^{T}\Sigma ec{w}}}$$

To maximize $\vec{w}^T \Sigma \vec{w}$ we devise a simple loss term:

$$\mathcal{L} = \mathcal{L}_{\mathsf{C}} - \mathcal{L}_{\mathsf{WCA}}$$

Where \mathcal{L}_{C} is the classification loss (e.g., cross entropy) and:

$$\mathcal{L}_{\mathsf{WCA}} = \sum_{i=1}^{C} \ln(\vec{w}_i^T \Sigma \vec{w}_i)$$

Results on CIFAR

	CIFAR-10			CIFAR-100		
Method	Clean	FGSM	PGD	Clean	FGSM	PGD
Adv-BNN	82.2	60.0	53.6	\sim 58.0	\sim 30.0	\sim 27.0
PNI	87.2	58.1	49.4	\sim 61.0	\sim 27.0	\sim 22.0
L2P	85.3	62.4	56.1	\sim 50.0	\sim 30.0	\sim 26.0
SE-SNN	92.3	74.3	-	-	-	-
IAAT	-	-	-	63.9	-	18.5
WCA	93.2	77.6	71.4	70.1	51.5	42.7

-

æ

Empirical Observations About WCA

Left: WCA Isotropic, Right: WCA Anisotropic

Empirical Evaluation of the Bound

7/8

Thank you

æ