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Uncertainty Estimation is Especially Important Under
Distribution Shift

Machine learning models are often much less accurate with distribution shifted test
data

|deally, model should be able to identify inputs for which it's predictions should not
be trusted

Distribution shift hurts uncertainty estimation as well as accuracy, resulting in
highly overconfident mistakes



Conditional Normalized Maximum Likelihood (CNML)

Intuition: want conservative uncertainty estimates for out-of-distribution test inputs where
errors are more likely. If we can find models consistent with our training data that predict
different labels on the test input, then we should have high uncertainty.

Given an input x, for each possible label y, find model that best fits the label together with the

training data. .
6, = argmax, log py(y|z) + log po(Dyrain)

Regret for a predicted distribution p and label y: R(p,y) = 1ngéy(y|l'> — log p(y)

CNML minimizes worst-case regret: PcNML = argmin max R<p7 ?J)
D Y

)= )
PcNMmL\Y) = Zy’ Py, (y'|z)




CNML for Logistic Regression

etrain

10.0

75
5.0
25

0.0

-10.0 '
-100 -75 -50 -25 0.0 25 5.0 75 10.0

Optimal model prediction for the
original training set, test input shown
in pink

10.0

754

5.0

=-10.0
=100 -75 =50 -235 0.0 25 5.0 7.5 10.0

Optimal model predictions after
assigning test input to the blue class

-10.0 -
-100 -75 -50 -25 0.0 25 5.0 75 10.0

Optimal model predictions after
assigning test input to the orange
class



CNML for Logistic Regression

CNML

Heatmap of CNML predictions (left) vs training MLE (right): CNML
predictions are very uncertain away from the training data, while the
MLE extrapolates confidently.



Controlling conservativeness with regularization

CNML with highly expressive model classes might be able to fit too many labels,
even close to the training data where we want to make confident predictions.

Solution: regularize! Instead of taking MLE for each label, take a MAP solution

0, = argmax og po(y|z) + 10g po(Dirain) + 10 p(6)

A= (L] A=1

Increasmg welght decay regularlzatlon hlgher ,\ prowdes more confident
extrapolation as we move away from the data.




CNML is infeasible in realistic scenarios

For each input and label, need to solve an expensive optimization problem over the
entire training set

0= argmax log p(yl) +10g po(Divain) + 1og p(0)

Requires access to training data at test time, can be very slow to optimize



Amortized Conditional Normalized Maximum Likelihood (ACNML)

Idea: replace the training loss with a simple approximate Bayesian posterior

densit .
’ b, = argmaxlogpo(yle) + logps(Disi) + logp(6)

equal to log p(6|Dirain)

Learn approximate posterior density during training: log ¢(6) & log p(8|D;ain)

A

Solve simpler problem at test time: 6, = argmax log py(y|z) + log ¢(6)
0



Algorithm 1 Amortized CNML (ACNML)

Input: Model class O, Training Data (z1.,,—1, Y1:n—1)>
Test Point: x,,, Classes (1, ..., k)
Output: Predictive distribution p(y|z,,)
Training: Run approximate inference algorithm on train-
ing data (x1.,—1,Y1.n—1) to get posterior density ¢(6)
for all possible labels i € (1,...,k) do

Compute §; = argmax, logpg( |z, ) + log q(60)
end for

pey (y]zn)

Zf 1 p9 (len)

Return p(y|z,) =




ACNML provides conservative uncertainty estimates

Evaluate on corrupted image datasets to simulate distribution shift

Want predictions to be calibrated even with shift: confidence = accuracy
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Reliability diagrams visualizing model confidences vs accuracy show ACNML gives less confident
predictions overall, resulting in much improved calibration on more severe distribution shifts.



Empirical Results

ACNML outperforms
Bayesian methods and

deep ensembles on severe

distribution shifts in terms
of expected calibration

error as well in Brier score.
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(b) CIFAR10C VGG16 Brier Scores (lower is better)
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