Dimensionality Reduction for Sum-of-Distances Metric

Zhili Feng, Praneeth Kacham* and David Woodruff (CMU)

Introduction

- Datasets these days are huge and high-dimensional
- Crucial to decrease size of the data to save on storage and computation
- Two ways to achieve dataset reduction:
 - Dimensionality reduction decreasing \boldsymbol{d}
 - Coresets decreasing n (typically a weighted subset of the dataset)

Dimensionality Reduction

- If $d' \ll d$, can attain significant size reduction
- A' depends on the task we want to perform on A
- Example: If all we need is $||a_i a_j||_2$, we can have A' = AG, where G is a Gaussian matrix.
- JL Lemma $\Rightarrow d' = O(\log(n)/\epsilon^2)$
- Queries can be answered in O(d')

Shape Fitting

- $d(A,S) = \sum d(a)$ - Captures: - *k*-median
 - Subspace Approximation
- More robust to outliers than sum of squared distances

- Given A and a set of "shapes" \mathcal{S} , we want to find a $S \in \mathcal{S}$ that minimizes

$$a_i, S) = \sum_{i} \min_{s \in S} d(a_i, s)$$

Our Results

- We give dimensionality reduction to approximate upto a $1 \pm \epsilon$ factor, the distance to any "shape" *S* that lies in a *k* dimensional space
- We project A onto a $poly(k/\epsilon)$ dimensional subspace P
- $proj(a_i, P)$ and $dist(a_i, P)$ are all we need to approximate d(A, S) upto an ϵ factor
- *P* can be stored using $d \cdot poly(k/\epsilon)$ parameters and all the projections can be stored using $n \cdot poly(k/\epsilon)$ parameters

Our Results

- Theorem : The subspace *P* of $poly(k/\epsilon)$ dimensions can be computed in time $nnz(A)/\epsilon^2 + (n + d) \cdot poly(k/\epsilon)$
- For constant ϵ , the algorithm runs in input-sparsity time which can be much smaller than $n \cdot d$
- Can compute approximate projections and approximate distances to the subspace *P* in time $nnz(A) + (n + d) \cdot poly(k/\epsilon)$

Previous Work

 Sohler and Woodruff show that a subspace satisfying the following condition is sufficient:

for all
$$W$$
, $d(A, P) - d(A, P + W) \le \epsilon^2 OPT(A)$

- Here W is any k dimensional subspace and OPT(A) is the optimal k -Subspace approximation cost
- Existence of a k/ϵ^2 dimensional subspace P is easy

Previous Work

- Sohler and Woodruff give an algorithm to find such a subspace ${\cal P}$
- But it runs in time $nnz(A) + (n + d) \cdot poly(k/\epsilon) + exp(poly(k/\epsilon))$
- The $\exp(\operatorname{poly}(k/\epsilon))$ makes it infeasible to run their algorithm in practice even for small values of k and $1/\epsilon$
- Obtaining such a subspace ${\cal P}$ in polynomial time is our major technical contribution

Obtaining such a subspace

- Suppose we have an algorithm given arbitrary A and P that can find a subspace Q of r dimensions such that
 - $d(A(I-P), Q) \le (1+\epsilon) \cdot \mathsf{OPT}(A(I-P))$
- Run algorithm with $P_0 = \{0\}$ to get Q_1 such that $d(A,Q_1) \le (1+\epsilon) \cdot \mathsf{OPT}(A)$
- Let $P_i = Q_1 + \dots + Q_i$ and run the algorithm with subspace P_i to get Q_{i+1} that satisfies
 - $d(A, P_{i+1}) = d(A(I P_i), Q_{i+1}) \le (1 + \epsilon) \cdot \mathsf{OPT}(A(I P_i))$
- This implies that, for all *k*-dim *W*, $d(A, P_{i+1}) \leq (1 + \epsilon) \cdot d(A, P_i + W)$
- Repeat the process for $T = 10/\epsilon$ iterations

Obtaining such a subspace - As $d(A, P_1) \leq (1 + \epsilon) \cdot \text{OPT}(A)$, we have that $\sum_{T=1}^{T-1} d(A, P_i) - d(A, P_{i+1}) \leq (1 + \epsilon) \cdot \text{OPT}(A)$ i=1

- At least $8/\epsilon$ summands above are $\leq \epsilon \cdot OPT(A)$
- By definition of P_{i+1} , we also have that for all k-dim subspaces W, $d(A, P_{i+1}) \le (1 + \epsilon) \cdot d(A, P_i + W)$
- Therefore for many values of i, and all k-dim subspaces W,

$$d(A, P_i) - d(A, P_i + W) \le \epsilon$$

 $\cdot \mathsf{OPT}(A) + \epsilon \cdot d(A, P_i + W)$ $\leq O(\epsilon) \cdot \mathsf{OPT}(A)$

Obtaining such a subspace

- Running for $10/\epsilon^2$ iterations with parameter ϵ^2 and picking subspace after a random iteration gives the desired subspace of dimension $O(r/\epsilon^2)$
- We use the framework of Clarkson and Woodruff to obtain $1+\epsilon$ approximate solutions with $r=\mathrm{poly}(k/\epsilon)$
- Our algorithm has two stages:
 - Find an O(1)-approximate solution
 - Perform "residual sampling" using the ${\cal O}(1)$ solution to get $1+\epsilon$ approximate solution

Finding O(1) approximation

O(k) columns, then

rank-k X

- Essentially shows that column span of AS contains a good solution
- We then argue that if L is an ℓ_1 subspace embedding for the column space of AS and satisfies $E_L[||LM||_{1,2}] = ||M||_{1,2}$ for any matrix M, then

- Such a matrix L with $\tilde{O}(k)$ rows can be found using Lewis Weight Sampling algorithm of Cohen and Peng.

- We show using "lopsided embeddings" that if S is a Gaussian matrix with

min $||ASX - A||_{1,2} \le (3/2) \cdot OPT$

 $||A(I - (LA)^+LA)||_{1,2} \le O(1) \cdot OPT$

Finding $1 + \epsilon$ approximation

- Let P be an arbitrary subspace such that:
 - $||A(I-P)||_{1,2} \le O(1) \cdot OPT(A)$
- Define $r_i = ||A_{i^*}(I P)||_2$ to be the residual of *i*-th row
- A result of Clarkson and Woodruff shows that if A_S is obtained by sampling $\tilde{O}(k^3/\epsilon^2)$ rows of matrix A independently with probabilities proportional to r_i , then $P' = \text{rowspace}(A_S) + P$ satisfies, with constant probability,

 $\|A(I - P')\|_{1,2} \le (1 + \epsilon) \cdot \mathsf{OPT}(A)$

Wrap up

- adaptively implemented with desired time complexity
- time $n \cdot d + (n + d) \cdot \text{poly}(k/\epsilon)$
- See our paper for more details
- Thank you!

- Rest of the analysis involves showing that the previous algorithm can be

- For the dense case, when $nnz(A) \approx n \cdot d$, we give an algorithm that runs in