Dimensionality Reduction

 for Sum-of-Distances MetricZhili Feng, Praneeth Kacham* and David Woodruff (CMU)

Introduction

- Datasets these days are huge and high-dimensional
- Crucial to decrease size of the data to save on storage and computation
- Two ways to achieve dataset reduction:
- Dimensionality reduction - decreasing d
- Coresets - decreasing n (typically a weighted subset of the dataset)

Dimensionality Reduction

- If $d^{\prime} \ll d$, can attain significant size reduction
- A^{\prime} depends on the task we want to perform on A
- Example: If all we need is $\left\|a_{i}-a_{j}\right\|_{2}$, we can have $A^{\prime}=A G$, where G is a Gaussian matrix.
- JL Lemma $\Rightarrow d^{\prime}=O\left(\log (n) / \epsilon^{2}\right)$
- Queries can be answered in $O\left(d^{\prime}\right)$

Shape Fitting

- Given A and a set of "shapes" \mathcal{S}, we want to find a $S \in \mathcal{S}$ that minimizes

$$
d(A, S)=\sum_{i} d\left(a_{i}, S\right)=\sum_{i} \min _{s \in S} d\left(a_{i}, s\right)
$$

- Captures:
- k-median
- Subspace Approximation

- More robust to outliers than sum of squared distances

Our Results

- We give dimensionality reduction to approximate upto a $1 \pm \epsilon$ factor, the distance to any "shape" S that lies in a k dimensional space
- We project A onto a poly (k / ϵ) dimensional subspace P
- $\operatorname{proj}\left(a_{i}, P\right)$ and $\operatorname{dist}\left(a_{i}, P\right)$ are all we need to approximate $d(A, S)$ upto an ϵ factor
- P can be stored using $d \cdot \operatorname{poly}(k / \epsilon)$ parameters and all the projections can be stored using $n \cdot \operatorname{poly}(k / \epsilon)$ parameters

Our Results

Theorem : The subspace P of poly (k / ϵ) dimensions can be computed in time nnz $(A) / \epsilon^{2}+(n+d) \cdot \operatorname{poly}(k / \epsilon)$

- For constant ϵ, the algorithm runs in input-sparsity time which can be much smaller than $n \cdot d$
- Can compute approximate projections and approximate distances to the subspace P in time $\operatorname{nnz}(A)+(n+d) \cdot \operatorname{poly}(k / \epsilon)$

Previous Work

- Sohler and Woodruff show that a subspace satisfying the following condition is sufficient:

$$
\text { for all } W, \quad d(A, P)-d(A, P+W) \leq \epsilon^{2} \mathrm{OPT}(A)
$$

- Here W is any k dimensional subspace and $\operatorname{OPT}(A)$ is the optimal k -Subspace approximation cost
- Existence of a k / ϵ^{2} dimensional subspace P is easy

Previous Work

- Sohler and Woodruff give an algorithm to find such a subspace P
- But it runs in time nnz $(A)+(n+d) \cdot \operatorname{poly}(k / \epsilon)+\exp (\operatorname{poly}(k / \epsilon))$
- The $\exp (\operatorname{poly}(k / \epsilon))$ makes it infeasible to run their algorithm in practice even for small values of k and $1 / \epsilon$
- Obtaining such a subspace P in polynomial time is our major technical contribution

Obtaining such a subspace

- Suppose we have an algorithm given arbitrary A and P that can find a subspace Q of r dimensions such that

$$
d(A(I-P), Q) \leq(1+\epsilon) \cdot \mathrm{OPT}(A(I-P))
$$

- Run algorithm with $P_{0}=\{0\}$ to get Q_{1} such that

$$
d\left(A, Q_{1}\right) \leq(1+\epsilon) \cdot \operatorname{OPT}(A)
$$

- Let $P_{i}=Q_{1}+\cdots+Q_{i}$ and run the algorithm with subspace P_{i} to get Q_{i+1} that satisfies

$$
d\left(A, P_{i+1}\right)=d\left(A\left(I-P_{i}\right), Q_{i+1}\right) \leq(1+\epsilon) \cdot \mathrm{OPT}\left(A\left(I-P_{i}\right)\right)
$$

- This implies that, for all k-dim W,

$$
d\left(A, P_{i+1}\right) \leq(1+\epsilon) \cdot d\left(A, P_{i}+W\right)
$$

- Repeat the process for $T=10 / \epsilon$ iterations

Obtaining such a subspace

- As $d\left(A, P_{1}\right) \leq(1+\epsilon) \cdot \operatorname{OPT}(A)$, we have that

$$
\sum_{i=1}^{T-1} d\left(A, P_{i}\right)-d\left(A, P_{i+1}\right) \leq(1+\epsilon) \cdot \mathrm{OPT}(A)
$$

- At least $8 / \epsilon$ summands above are $\leq \epsilon \cdot \mathrm{OPT}(A)$
- By definition of P_{i+1}, we also have that for all k-dim subspaces W,

$$
d\left(A, P_{i+1}\right) \leq(1+\epsilon) \cdot d\left(A, P_{i}+W\right)
$$

- Therefore for many values of i, and all k-dim subspaces W,

$$
\begin{aligned}
d\left(A, P_{i}\right)-d\left(A, P_{i}+W\right) & \leq \epsilon \cdot \mathrm{OPT}(A)+\epsilon \cdot d\left(A, P_{i}+W\right) \\
& \leq O(\epsilon) \cdot \mathrm{OPT}(A)
\end{aligned}
$$

Obtaining such a subspace

- Running for $10 / \epsilon^{2}$ iterations with parameter ϵ^{2} and picking subspace after a random iteration gives the desired subspace of dimension $O\left(r / \epsilon^{2}\right)$
- We use the framework of Clarkson and Woodruff to obtain $1+\epsilon$ approximate solutions with $r=\operatorname{poly}(k / \epsilon)$
- Our algorithm has two stages:
- Find an $O(1)$-approximate solution
- Perform "residual sampling" using the $O(1)$ solution to get $1+\epsilon$ approximate solution

Finding $O(1)$ approximation

- We show using "lopsided embeddings" that if S is a Gaussian matrix with $O(k)$ columns, then

$$
\min _{\operatorname{rank}-k X}\|A S X-A\|_{1,2} \leq(3 / 2) \cdot \mathrm{OPT}
$$

- Essentially shows that column span of $A S$ contains a good solution
- We then argue that if L is an ℓ_{1} subspace embedding for the column space of $A S$ and satisfies $E_{L}\left[\|L M\|_{1,2}\right]=\|M\|_{1,2}$ for any matrix M, then

$$
\left\|A\left(I-(L A)^{+} L A\right)\right\|_{1,2} \leq O(1) \cdot \mathrm{OPT}
$$

- Such a matrix L with $\tilde{O}(k)$ rows can be found using Lewis Weight Sampling algorithm of Cohen and Peng.

Finding $1+\epsilon$ approximation

- Let P be an arbitrary subspace such that:

$$
\|A(I-P)\|_{1,2} \leq O(1) \cdot \mathrm{OPT}(A)
$$

- Define $r_{i}=\left\|A_{i^{*}}(I-P)\right\|_{2}$ to be the residual of i-th row
- A result of Clarkson and Woodruff shows that if A_{S} is obtained by sampling $\tilde{O}\left(k^{3} / \epsilon^{2}\right)$ rows of matrix A independently with probabilities proportional to r_{i}, then $P^{\prime}=\operatorname{rowspace}\left(A_{S}\right)+P$ satisfies, with constant probability,

$$
\left\|A\left(I-P^{\prime}\right)\right\|_{1,2} \leq(1+\epsilon) \cdot \mathrm{OPT}(A)
$$

Wrap up

- Rest of the analysis involves showing that the previous algorithm can be adaptively implemented with desired time complexity
- For the dense case, when $n n z(A) \approx n \cdot d$, we give an algorithm that runs in time $n \cdot d+(n+d) \cdot \operatorname{poly}(k / \epsilon)$
- See our paper for more details
- Thank you!

