Dimensionality Reduction

Zhili Feng, Praneeth Kacham* and David Woodruff (CMU)

Introduction

- Datasets these days are huge and high-dimensional
- Crucial to decrease size of the data to save on storage and computation

- Two ways to achieve dataset reduction:
- Dimensionality reduction - decreasing d

- Coresets - decreasing n (typically a weighted subset of the dataset)

Dimensionality Reduction

- If d’ < d, can attain significant size
reduction

- A’ depends on the task we want to
perform on A

- Example: If all we need is||a; — a/|,,

we can have A’ = AG, where G is a
Gaussian matrix.

- JL Lemma D d’ = O(log(n)/e*)

- Queries can be answered in O(d’)

—\

d/

a.G

A/

a.G

Shape Fitting
- Given A and a set of “shapes” &, we want to find a $ € & that minimizes

d(A,S) =) d(a,S)=) mind(a,s)

sES

- Captures: i
- k-median ° : . /
- Subspace Approximation) . '

- More robust to outliers than sum of squared distances

Our Results

- We give dimensionality reduction to approximate upto a 1 * ¢ factor, the
distance to any “shape” S that lies in a k dimensional space

- We project A onto a poly(k/¢) dimensional subspace P

- proj(a;, P) and dist(a;, P) are all we need to approximate d(A, S) upto an €
factor

- P can be stored using d - poly(k/e) parameters and all the projections can
be stored using n - poly(k/e) parameters

Our Results

Theorem : The subspace P of poly(k/¢e) dimensions can be
computed in time nnz(A)/e” + (n + d) - poly(k/€)

- For constant ¢, the algorithm runs In input-sparsity time which can
be much smallerthann - d

- Can compute approximate projections and approximate distances
to the subspace P in time nnz(A) + (n + d) - poly(k/¢€)

Previous Work

- Sohler and Woodruff show that a subspace satisfying the following
condition is sufficient:

forall W, d(A,P)—dA,P+ W) < e’?0OPT(A)

- Here W is any k dimensional subspace and OPT(A) is the optimal k
-Subspace approximation cost

- Existence of a k/¢? dimensional subspace P is easy

Previous Work

- Sohler and Woodruff give an algorithm to find such a subspace P
- But it runs in time nnz(A) + (n + d) - poly(k/e) + exp(poly(k/€))

- The exp(poly(k/€)) makes it infeasible to run their algorithm in practice
even for small values of k and 1/¢

- Obtaining such a subspace P in polynomial time is our major technical
contribution

Obtaining such a subspace

- Suppose we have an algorithm given arbitrary A and P that can find a
subspace Q of r dimensions such that

dA(I—-P),0) < (1+¢)- OPTA — P))
- Run algorithm with P, = {0} to get (), such that

dA, Q) <1 +¢€) - OPTA)

- Let P, = O + --- + Q; and run the algorithm with subspace P, to get O,
that satisfies

dA,P,_.) =dAU—-P),0..) <1 +¢€) - OPT(AU - P))
- This implies that, for all k-dim W,
d(A,P,) < (1+¢€)-dA,P,+ W)

- Repeat the process for 7' = 10/¢ iterations

Obtaining such a subspace
- AsdA,P)) < (1 e) OPT(A), we have that

Zd(A,Pl) —d(A,P;,) < (1 +¢)-OPT(A)
- Atleast 8/¢ summands above are < ¢ - OPT(A)
- By definition of P, |, we also have that for all k-dim subspaces W,
d(A,P.) < (1+¢) -dA,P+W)
- Therefore for many values of i, and all k-dim subspaces W,

dA,P)—dA,P,+ W) <e-OPTA)+¢e-dA,P,+ W)
< 0O(e) - OPT(A)

Obtaining such a subspace

- Running for 10/ ¢? iterations with parameter e and picking subspace after

a random iteration gives the desired subspace of dimension O(r/¢?)

- We use the framework of Clarkson and Woodruff to obtain 1 + ¢
approximate solutions with » = poly(k/¢)

- Our algorithm has two stages:
- Find an O(1)-approximate solution

- Perform “residual sampling” using the O(1) solutionto get 1 + ¢
approximate solution

Finding O(1) approximation

We show using “lopsided embeddings” that if § is a Gaussian matrix with
O(k) columns, then

min ||[ASX —Al|l{, < (3/2)-OPT
rank—k X ’

Essentially shows that column span of AS contains a good solution

We then argue that if L is an £ subspace embedding for the column space
of AS and satisfies £, [|| LM||, ,| = |[M]], , for any matrix M, then

|AU — (LAY*LA)||,, < O(1) - OPT

Such a matrix L with O(k) rows can be found using Lewis Weight Sampling
algorithm of Cohen and Peng.

Finding 1 + ¢ approximation

- Let P be an arbitrary subspace such that:
[A(= P)||;, < O(1) - OPT(A)

- Define r; = ||A;«(I — P)||, to be the residual of i-th row

- A result of Clarkson and Woodruff shows that if A is obtained by sampling

0(1{3/ 62) rows of matrix A independently with probabilities proportional to
r;, then P’ = rowspace(Ag) + P satisfies, with constant probability,

|AU = P)ll;, < (1 +¢)- OPT(A)

Wrap up

- Rest of the analysis involves showing that the previous algorithm can be
adaptively implemented with desired time complexity

- For the dense case, when nnz(A) ~ n - d, we give an algorithm that runs in
timen-d+ (n+d) - poly(k/e¢)

- See our paper for more details

- Thank you!

