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Introduction
- Datasets these days are huge and high-dimensional 

- Crucial to decrease size of the data to save on storage and computation 

- Two ways to achieve dataset reduction: 

- Dimensionality reduction - decreasing  

- Coresets - decreasing  (typically a weighted subset of the dataset)
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- If , can attain significant size 
reduction 

-  depends on the task we want to 
perform on  

- Example: If all we need is , 
we can have , where  is a 
Gaussian matrix. 

- JL Lemma      

- Queries can be answered in 
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Shape Fitting
- Given  and a set of “shapes” , we want to find a  that minimizes 

- Captures: 

- -median 

- Subspace Approximation 

- More robust to outliers than sum of squared distances
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Our Results
- We give dimensionality reduction to approximate upto a  factor, the 

distance to any “shape”  that lies in a  dimensional space 

- We project  onto a  dimensional subspace  

-  and  are all we need to approximate  upto an    
factor 

-  can be stored using  parameters and all the projections can 
be stored using  parameters
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Our Results
Theorem : The subspace  of  dimensions can be 
computed in time  

- For constant , the algorithm runs in input-sparsity time which can 
be much smaller than  

- Can compute approximate projections and approximate distances 
to the subspace  in time 
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Previous Work
- Sohler and Woodruff show that a subspace satisfying the following 

condition is sufficient: 

- Here  is any  dimensional subspace and  is the optimal 
-Subspace approximation cost 

- Existence of a  dimensional subspace  is easy
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Previous Work
- Sohler and Woodruff give an algorithm to find such a subspace  

- But it runs in time  

- The  makes it infeasible to run their algorithm in practice 
even for small values of  and  

- Obtaining such a subspace  in polynomial time is our major technical 
contribution
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Obtaining such a subspace
- Suppose we have an algorithm given arbitrary  that can find a 

subspace  of  dimensions such that 

- Run algorithm with  to get  such that 

- Let  and run the algorithm with subspace  to get  
that satisfies 

- This implies that, for all -dim  

- Repeat the process for  iterations
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Obtaining such a subspace
- As , we have that 

- At least  summands above are  

- By definition of , we also have that for all -dim subspaces , 

- Therefore for many values of , and all -dim subspaces ,
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Obtaining such a subspace
- Running for  iterations with parameter  and picking subspace after 

a random iteration gives the desired subspace of dimension  

- We use the framework of Clarkson and Woodruff to obtain  
approximate solutions with  

- Our algorithm has two stages: 

- Find an -approximate solution 

- Perform “residual sampling” using the  solution to get  
approximate solution

10/ϵ2 ϵ2

O(r/ϵ2)

1 + ϵ
r = poly(k/ϵ)

O(1)

O(1) 1 + ϵ



Finding  approximationO(1)
- We show using “lopsided embeddings” that if  is a Gaussian matrix with 

 columns, then 

- Essentially shows that column span of  contains a good solution 

- We then argue that if  is an  subspace embedding for the column space 
of  and satisfies  for any matrix , then 

- Such a matrix  with  rows can be found using Lewis Weight Sampling 
algorithm of Cohen and Peng.  
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Finding  approximation1 + ϵ
- Let  be an arbitrary subspace such that:                     

- Define  to be the residual of -th row  

- A result of Clarkson and Woodruff shows that if  is obtained by sampling 
 rows of matrix  independently with probabilities proportional to 

, then  satisfies, with constant probability,
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Wrap up
- Rest of the analysis involves showing that the previous algorithm can be 

adaptively implemented with desired time complexity 

- For the dense case, when , we give an algorithm that runs in 
time  

- See our paper for more details 

- Thank you!
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