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Introduction

I Precision (or inverse covariance) matrix estimation
I Gaussian graphical models: the set of off-diagonal non-zero

entries (support) of the precision matrix ⇐⇒ the set of edges of
the graph.

I Sign-consistency: the estimated precision matrix has the same
support and sign of entries with respect to the true matrix.

I Challenges:
I High-dimensionality: n (sample size) � N (dimension)

I assume sparsity; use `1-regularized log-determinant Bregman
divergence minimization.

I Heterogeneity: multiple tasks with different precision matrices
I introduce random precision matrices;
I consider meta learning and improper estimation.



Model

I Multivariate sub-Gaussian distributions with random precision
matrices. For k ∈ {1, ..,K}, t ∈ {1, .., n(k)}, i ∈ {1, .., N}:
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I Ω̄(k) = Ω̄ + ∆(k) with Ω̄,∆(k) ∈ RN×N ;
I Ω̄ � 0 deterministic, ∆(k) i.i.d. from distribution P

satisfying some conditions;
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n(k) conditionally independent given Ω̄(k);

I X
(k)
t,i conditioned on Ω̄(k) is sub-Gaussian.

I Ω̄: true common precision matrix.
S := supp(Ω̄): support union.



Method

I Meta learning – a two-step method:
I estimate the support union from K auxiliary tasks;
I estimate the precision matrix of the novel task (the (K + 1)-th

task) with the knowledge of the support union.

I Improper estimation:
I pool all the samples from auxiliary tasks to estimate a single

“common precision matrix” to recover the support union.



Method

I Support union recovery:
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I Support recovery for novel task:

Ω̂(K+1) = arg min
Ω�0

(
〈Σ̂(K+1),Ω〉 − log det (Ω) + λ‖Ω‖1

)
s.t. supp(Ω) ⊆ supp(Ω̂), diag(Ω) = diag(Ω̂).

(2)

For simplicity, assume n(k) = n for 1 ≤ k ≤ K.



Theoretical Results

I Support union recovery
I Under some conditions, with probability at least

1−O
(
N2 exp{−nK}

)
, (3)

the estimator Ω̂ is sign-consistent.
I Sufficient sample complexity for support union recovery:

n ∈ O((logN)/K).



Theoretical Results

I Support union recovery
I For some family of N -dimensional random multivariate

sub-Gaussian distributions of size K with support union S and
any estimate Ŝ of S, we have

P{Ŝ 6= S} ≥ 1−O
(
nK

logN

)
(4)

I Necessary sample complexity for support union recovery:
n ∈ Ω((logN)/K).



Theoretical Results

I Support recovery for novel task
I Suppose the support union S is recovered. For a novel task of

multivariate sub-Gaussian distribution with precision matrix
Ω̄(K+1) such that supp(Ω̄(K+1)) ⊆ S, under some conditions,
with probability at least,

1−O
(
|Soff| exp

{
−n(K+1)

})
, (5)

the estimator Ω̂(K+1) is sign-consistent.

I Overall sufficient sample complexity:
I n ∈ O(log(N)/K) for each auxiliary task;
I n(K+1) ∈ O(log(|Soff|)) for the novel task.



Theoretical Results

I Support recovery for novel task
I Consider n samples generated from some N -dimensional

multivariate sub-Gaussian distribution whose precision matrix
has support S(K+1) ⊂ S. For any estimate Ŝ(K+1) of S(K+1),
we have

P{Ŝ(K+1) 6= S(K+1)} ≥ 1−O
(

n

log |Soff|

)
(6)

I Necessary sample complexity for the novel task:
n(K+1) ∈ Ω(log(|Soff|)).

I Our method is minimax optimal.



Related Work

Table 1: Sufficient sample complexity for support union recovery.

Method Sample Complexity

Our meta learning method n ∈ O(log(N)/K)
Multi-task [Honorio et al., 2012] n ∈ O(logK + logN)

Multi-task [Guo et al., 2011] n ∈ O((N logN)/K)
Multi-task [Ma and Michailidis, 2016] n ∈ O(K + logN)

Table 2: Sufficient sample complexity for support recovery on the novel
task.

Method Sample Complexity

Our meta learning method n(K+1) ∈ O(log(|Soff|))
Single-task [Ravikumar et al., 2011] n(K+1) ∈ O(logN)
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