Meta Learning for Support Recovery in High-dimensional Precision Matrix Estimation

Qian Zhang, Yilin Zheng, Jean Honorio

Purdue University

Introduction

- Precision (or inverse covariance) matrix estimation

 - Sign-consistency: the estimated precision matrix has the same support and sign of entries with respect to the true matrix.
- Challenges:
 - ▶ High-dimensionality: n (sample size) $\ll N$ (dimension)
 - ▶ assume sparsity; use ℓ_1 -regularized log-determinant Bregman divergence minimization.
 - ► Heterogeneity: multiple tasks with different precision matrices
 - introduce random precision matrices;
 - consider meta learning and improper estimation.

Model

- Multivariate sub-Gaussian distributions with random precision **matrices**. For $k \in \{1, ..., K\}, t \in \{1, ..., n^{(k)}\}, i \in \{1, ..., N\}$:

 - $\begin{array}{l} \blacktriangleright \ \, X_1^{(k)},\ldots,X_{n^{(k)}}^{(k)}\in\mathbb{R}^N \text{ i.i.d.;} \\ \blacktriangleright \ \, \mathbb{E}\left[X_t^{(k)}\big|\bar{\Omega}^{(k)}\right]=0, \, \operatorname{Cov}\left(X_t^{(k)}\big|\bar{\Omega}^{(k)}\right)=\bar{\Sigma}^{(k)}:=\left(\bar{\Omega}^{(k)}\right)^{-1}; \end{array}$
 - $\bar{\Omega}^{(\bar{k})} = \bar{\Omega} + \bar{\Delta}^{(k)}$ with $\bar{\Omega} \cdot \bar{\Delta}^{(k)} \in \mathbb{R}^{N \times N}$:
 - $ightharpoonup \bar{\Omega} \succ 0$ deterministic, $\Delta^{(k)}$ i.i.d. from distribution Psatisfying some conditions;
 - $X_1^{(k)}, \ldots, X_{n(k)}^{(k)}$ conditionally independent given $\bar{\Omega}^{(k)}$;
 - $ightharpoonup X_{t,i}^{(k)}$ conditioned on $\bar{\Omega}^{(k)}$ is sub-Gaussian.
- $ightharpoonup \bar{\Omega}$: true common precision matrix.
 - $S := \operatorname{supp}(\bar{\Omega})$: support union.

Method

- ► Meta learning a two-step method:
 - estimate the support union from K auxiliary tasks;
 - estimate the precision matrix of the novel task (the (K+1)-th task) with the knowledge of the support union.
- ► Improper estimation:
 - pool all the samples from auxiliary tasks to estimate a single "common precision matrix" to recover the support union.

Method

Support union recovery:

$$\hat{\Omega} = \underset{\Omega \succ 0}{\operatorname{arg\,min}} \left(\sum_{k=1}^{K} T^{(k)} \left(\langle \hat{\Sigma}^{(k)}, \Omega \rangle - \log \det \left(\Omega \right) \right) + \lambda \|\Omega\|_{1} \right),$$

$$T^{(k)} \propto n^{(k)}, \quad \hat{\Sigma}^{(k)} := \frac{1}{n^{(k)}} \sum_{t=1}^{n^{(k)}} X_{t}^{(k)} \left(X_{t}^{(k)} \right)^{\top}.$$
(1)

Support recovery for novel task:

$$\begin{split} \hat{\Omega}^{(K+1)} = & \underset{\Omega \succ 0}{\arg\min} \left(\langle \hat{\Sigma}^{(K+1)}, \Omega \rangle - \log \det \left(\Omega \right) + \lambda \| \Omega \|_1 \right) \\ \text{s.t. } & \sup (\Omega) \subseteq \operatorname{supp}(\hat{\Omega}), \quad \operatorname{diag}(\Omega) = \operatorname{diag}(\hat{\Omega}). \end{split}$$

For simplicity, assume $n^{(k)} = n$ for $1 \le k \le K$.

- Support union recovery
 - Under some conditions, with probability at least

$$1 - O\left(N^2 \exp\{-nK\}\right),\tag{3}$$

the estimator $\hat{\Omega}$ is sign-consistent.

Sufficient sample complexity for support union recovery: $n \in O((\log N)/K)$.

- Support union recovery
 - For some family of N-dimensional random multivariate sub-Gaussian distributions of size K with support union S and any estimate \hat{S} of S, we have

$$\mathbb{P}\{\hat{S} \neq S\} \ge 1 - O\left(\frac{nK}{\log N}\right) \tag{4}$$

Necessary sample complexity for support union recovery: $n \in \Omega((\log N)/K)$.

- Support recovery for novel task
 - Suppose the support union S is recovered. For a novel task of multivariate sub-Gaussian distribution with precision matrix $\bar{\Omega}^{(K+1)}$ such that $\mathrm{supp}(\bar{\Omega}^{(K+1)}) \subseteq S$, under some conditions, with probability at least,

$$1 - O\left(|S_{\mathsf{off}}| \exp\left\{-n^{(K+1)}\right\}\right),\tag{5}$$

the estimator $\hat{\Omega}^{(K+1)}$ is sign-consistent.

- Overall sufficient sample complexity:
 - ▶ $n \in O(\log(N)/K)$ for each auxiliary task;
 - $n^{(K+1)} \in O(\log(|S_{\text{off}}|))$ for the novel task.

- Support recovery for novel task
 - Consider n samples generated from some N-dimensional multivariate sub-Gaussian distribution whose precision matrix has support $S^{(K+1)} \subset S$. For any estimate $\hat{S}^{(K+1)}$ of $S^{(K+1)}$, we have

$$\mathbb{P}\{\hat{S}^{(K+1)} \neq S^{(K+1)}\} \ge 1 - O\left(\frac{n}{\log|S_{\text{off}}|}\right)$$
 (6)

- Necessary sample complexity for the novel task: $n^{(K+1)} \in \Omega(\log(|S_{\text{off}}|)).$
- Our method is minimax optimal.

Related Work

Table 1: Sufficient sample complexity for support union recovery.

Method	Sample Complexity
Our meta learning method	$n \in O(\log(N)/K)$
Multi-task [Honorio et al., 2012]	$n \in O(\log K + \log N)$
Multi-task [Guo et al., 2011]	$n \in O((N \log N)/K)$
Multi-task [Ma and Michailidis, 2016]	$n \in O(K + \log N)$

Table 2: Sufficient sample complexity for support recovery on the novel task.

Method	Sample Complexity
Our meta learning method	$n^{(K+1)} \in O(\log(S_{off}))$ $n^{(K+1)} \in O(\log N)$
Single-task [Ravikumar et al., 2011]	$n^{(11+2)} \in O(\log N)$

Thank You!