Meta Learning for Support Recovery in High-dimensional Precision Matrix Estimation

Qian Zhang, Yilin Zheng, Jean Honorio

Purdue University

Introduction

- Precision (or inverse covariance) matrix estimation
- Gaussian graphical models: the set of off-diagonal non-zero entries (support) of the precision matrix \Longleftrightarrow the set of edges of the graph.
- Sign-consistency: the estimated precision matrix has the same support and sign of entries with respect to the true matrix.
- Challenges:
- High-dimensionality: n (sample size) $\ll N$ (dimension)
\rightarrow assume sparsity; use ℓ_{1}-regularized log-determinant Bregman divergence minimization.
- Heterogeneity: multiple tasks with different precision matrices
- introduce random precision matrices;
- consider meta learning and improper estimation.

Model

- Multivariate sub-Gaussian distributions with random precision matrices. For $k \in\{1, . ., K\}, t \in\left\{1, . ., n^{(k)}\right\}, i \in\{1, . ., N\}$:
- $X_{1}^{(k)}, \ldots, X_{n}^{(k)} \in \mathbb{R}^{N}$ i.i.d.;
- $\mathbb{E}\left[X_{t}^{(k)} \mid \bar{\Omega}^{(k)}\right]=0, \operatorname{Cov}\left(X_{t}^{(k)} \mid \bar{\Omega}^{(k)}\right)=\bar{\Sigma}^{(k)}:=\left(\bar{\Omega}^{(k)}\right)^{-1} ;$
- $\bar{\Omega}^{(k)}=\bar{\Omega}+\Delta^{(k)}$ with $\bar{\Omega}, \Delta^{(k)} \in \mathbb{R}^{N \times N}$;
- $\bar{\Omega} \succ 0$ deterministic, $\Delta^{(k)}$ i.i.d. from distribution P satisfying some conditions;
- $X_{1}^{(k)}, \ldots, X_{n^{(k)}}^{(k)}$ conditionally independent given $\bar{\Omega}^{(k)}$;
- $X_{t, i}^{(k)}$ conditioned on $\bar{\Omega}^{(k)}$ is sub-Gaussian.
- $\bar{\Omega}$: true common precision matrix. $S:=\operatorname{supp}(\bar{\Omega})$: support union.

Method

- Meta learning - a two-step method:
- estimate the support union from K auxiliary tasks;
- estimate the precision matrix of the novel task (the ($K+1$)-th task) with the knowledge of the support union.
- Improper estimation:
- pool all the samples from auxiliary tasks to estimate a single "common precision matrix" to recover the support union.

Method

- Support union recovery:

$$
\begin{align*}
& \hat{\Omega}=\underset{\Omega \succ 0}{\arg \min }\left(\sum_{k=1}^{K} T^{(k)}\left(\left\langle\hat{\Sigma}^{(k)}, \Omega\right\rangle-\log \operatorname{det}(\Omega)\right)+\lambda\|\Omega\|_{1}\right), \\
& T^{(k)} \propto n^{(k)}, \quad \hat{\Sigma}^{(k)}:=\frac{1}{n^{(k)}} \sum_{t=1}^{n^{(k)}} X_{t}^{(k)}\left(X_{t}^{(k)}\right)^{\top} . \tag{1}
\end{align*}
$$

- Support recovery for novel task:

$$
\begin{align*}
\hat{\Omega}^{(K+1)}= & \underset{\Omega \succ 0}{\arg \min }\left(\left\langle\hat{\Sigma}^{(K+1)}, \Omega\right\rangle-\log \operatorname{det}(\Omega)+\lambda\|\Omega\|_{1}\right) \\
& \text { s.t. } \operatorname{supp}(\Omega) \subseteq \operatorname{supp}(\hat{\Omega}), \quad \operatorname{diag}(\Omega)=\operatorname{diag}(\hat{\Omega}) . \tag{2}
\end{align*}
$$

For simplicity, assume $n^{(k)}=n$ for $1 \leq k \leq K$.

Theoretical Results

- Support union recovery
- Under some conditions, with probability at least

$$
\begin{equation*}
1-O\left(N^{2} \exp \{-n K\}\right) \tag{3}
\end{equation*}
$$

the estimator $\hat{\Omega}$ is sign-consistent.

- Sufficient sample complexity for support union recovery: $n \in O((\log N) / K)$.

Theoretical Results

- Support union recovery
- For some family of N-dimensional random multivariate sub-Gaussian distributions of size K with support union S and any estimate \hat{S} of S, we have

$$
\begin{equation*}
\mathbb{P}\{\hat{S} \neq S\} \geq 1-O\left(\frac{n K}{\log N}\right) \tag{4}
\end{equation*}
$$

- Necessary sample complexity for support union recovery: $n \in \Omega((\log N) / K)$.

Theoretical Results

- Support recovery for novel task
- Suppose the support union S is recovered. For a novel task of multivariate sub-Gaussian distribution with precision matrix $\bar{\Omega}^{(K+1)}$ such that $\operatorname{supp}\left(\bar{\Omega}^{(K+1)}\right) \subseteq S$, under some conditions, with probability at least,

$$
\begin{equation*}
1-O\left(\left|S_{\text {off }}\right| \exp \left\{-n^{(K+1)}\right\}\right) \tag{5}
\end{equation*}
$$

the estimator $\hat{\Omega}^{(K+1)}$ is sign-consistent.

- Overall sufficient sample complexity:
- $n \in O(\log (N) / K)$ for each auxiliary task;
- $n^{(K+1)} \in O\left(\log \left(\left|S_{\text {off }}\right|\right)\right)$ for the novel task.

Theoretical Results

- Support recovery for novel task
- Consider n samples generated from some N-dimensional multivariate sub-Gaussian distribution whose precision matrix has support $S^{(K+1)} \subset S$. For any estimate $\hat{S}^{(K+1)}$ of $S^{(K+1)}$, we have

$$
\begin{equation*}
\mathbb{P}\left\{\hat{S}^{(K+1)} \neq S^{(K+1)}\right\} \geq 1-O\left(\frac{n}{\log \left|S_{\text {off }}\right|}\right) \tag{6}
\end{equation*}
$$

- Necessary sample complexity for the novel task:

$$
n^{(K+1)} \in \Omega\left(\log \left(\left|S_{\text {off }}\right|\right)\right) .
$$

- Our method is minimax optimal.

Related Work

Table 1: Sufficient sample complexity for support union recovery.

Method	Sample Complexity
Our meta learning method	$n \in O(\log (N) / K)$
Multi-task [Honorio et al., 2012]	$n \in O(\log K+\log N)$
Multi-task [Guo et al., 2011]	$n \in O((N \log N) / K)$
Multi-task [Ma and Michailidis, 2016]	$n \in O(K+\log N)$

Table 2: Sufficient sample complexity for support recovery on the novel task.

Method	Sample Complexity
Our meta learning method	$n^{(K+1)} \in O\left(\log \left(\left\|S_{\text {off }}\right\|\right)\right)$
Single-task [Ravikumar et al., 2011]	$n^{(K+1)} \in O(\log N)$

Thank You!

