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Introduction

» Precision (or inverse covariance) matrix estimation
» Gaussian graphical models: the set of off-diagonal non-zero
entries (support) of the precision matrix <= the set of edges of
the graph.
» Sign-consistency: the estimated precision matrix has the same
support and sign of entries with respect to the true matrix.
» Challenges:
» High-dimensionality: n (sample size) < N (dimension)
P assume sparsity; use ¢i-regularized log-determinant Bregman
divergence minimization.
» Heterogeneity: multiple tasks with different precision matrices

» introduce random precision matrices;
> consider meta learning and improper estimation.



Model

» Multivariate sub-Gaussian distributions with random precision
matrices. For k € {1,...K},t € {1,..,n®} i e {1,.. N}:

> xM L x M) e RN iid;

> E {X§k>‘9<k>] — 0, Cov (ka |Q(k)) = 5k = (W)~
> 00 = 04 A®) with 2, AR € RV,

> Q> 0 deterministic, A®) i.i.d. from distribution P
satisfying some conditions;

x® X(]g) conditionally independent given Q(%);

> X(k) conditioned on Q) is sub-Gaussian.

» () true common precision matrix.
S :=supp(€2): support union.

v



Method

> Meta learning — a two-step method:
» estimate the support union from K auxiliary tasks;
> estimate the precision matrix of the novel task (the (K + 1)-th
task) with the knowledge of the support union.
» Improper estimation:

» pool all the samples from auxiliary tasks to estimate a single
“common precision matrix”" to recover the support union.



Method

» Support union recovery:

aréfoun <ZT ( — log det (Q)> + )\HQ]1> :
(1)
70 o ph), 0 = L n® x () (X;M)T_
» Support recovery for novel task:

QK — arg min (<XA:(K+1)’ Q) — log det () + A||QH1)
Q>0

s.t. supp(Q) C supp(Q), diag(Q) = diag(€).
(2)

For simplicity, assume n®) = n for 1 < k < K.



Theoretical Results

» Support union recovery
» Under some conditions, with probability at least

1-0 (N2 exp{—nK}),

the estimator () is sign-consistent.

» Sufficient sample complexity for support union recovery:

n € O((logN)/K).



Theoretical Results

» Support union recovery

» For some family of N-dimensional random multivariate
sub-Gaussian distributions of size K with support union S and
any estimate S of S, we have

P{§#5}21—0<1:;§V) 4)

» Necessary sample complexity for support union recovery:
n € Q((logN)/K).



Theoretical Results

» Support recovery for novel task

» Suppose the support union S is recovered. For a novel task of
multivariate sub-Gaussian distribution with precision matrix
QU+ such that supp(QUE+1)) C S, under some conditions,
with probability at least,

1= 0 (1Sl exp {—nFH0}) | (5)

the estimator Q(K+1) s sign-consistent.
» Overall sufficient sample complexity:

> n € O(log(N)/K) for each auxiliary task;
> nE+) € O(log(|Sor|)) for the novel task.



Theoretical Results

» Support recovery for novel task

» Consider n samples generated from some N-dimensional
multivariate sub-Gaussian distribution whose precision matrix
has support SE+1) < S. For any estimate S(K+1) of SK+1),

we have

P{SE+D) £ g(K+DY > 1 _ O <”> 6
{ # }> o | Sor] (6)

» Necessary sample complexity for the novel task:
TL(K+1) S Q(lOg(|Soff|)).

» Our method is minimax optimal.



Related Work

Table 1: Sufficient sample complexity for support union recovery.

Method Sample Complexity

Our meta learning method n € O(log(N)/K)
Multi-task [Honorio et al., 2012] n € O(log K +log N)
Multi-task [Guo et al., 2011] n € O((NlogN)/K)

Multi-task [Ma and Michailidis, 2016] n € O(K +log N)

Table 2: Sufficient sample complexity for support recovery on the novel
task.

Method Sample Complexity

Our meta learning method nE+) € O(log(|Sef))
Single-task [Ravikumar et al., 2011] nE+) € O(log N)
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