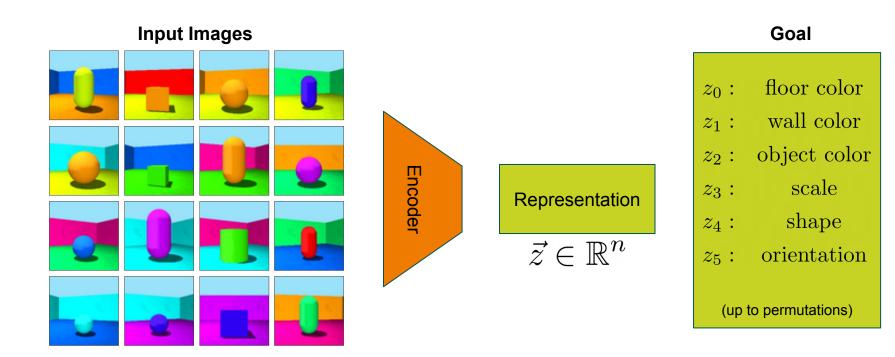
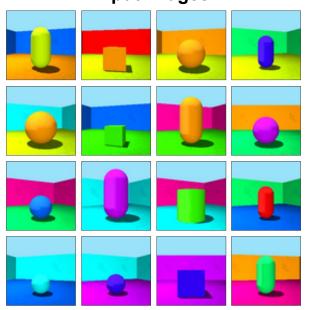


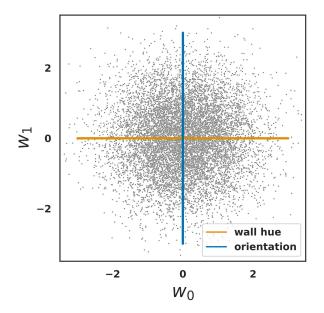
Dominik Zietlow, Michal Rolínek, Georg Martius


Unsupervised Disentangled Representation Learning: The Task

Each image is fully described by: floor color, wall color, object color, scale, shape, orientation

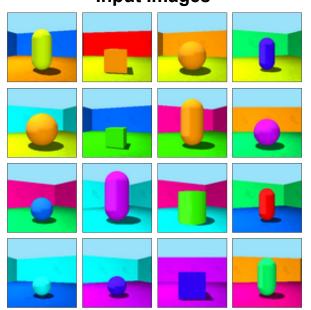
Unsupervised Disentangled Representation Learning: The Task

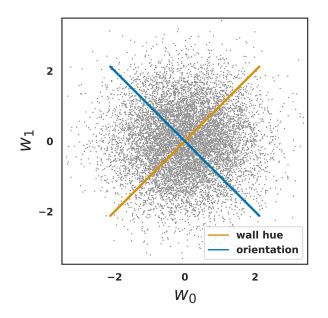



Each **image** is **fully described** by: floor color, wall color, object color, scale, shape, orientation

Unsupervised Disentangled Representation Learning: An III-posed Task

Input Images





Unsupervised Disentangled Representation Learning: An III-posed Task

Input Images

Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations, 2019, ICML

Unsupervised Disentangled Representation Learning: An III-posed Task

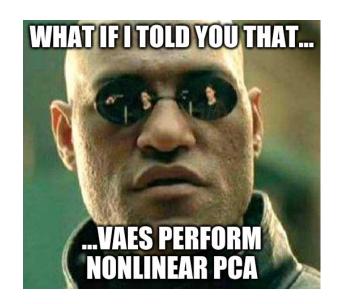
	AE	β -VAE	Shapes3d Factor-VAE	β -TC-VAE	Slow-VAE
MIG	0.06 ± 0.03	0.60 ± 0.31	0.27 ± 0.18	0.58 ± 0.20	0.53 ± 0.19

β-VAE: Higgins et al., β-VAE: Learning basic visual concepts with a constrained variational framework, 2017, ICLR

FactorVAE: Kim el al., Disentangling by factorising, 2018 ICML

β-TC-VAE: Chen et al., Isolating sources of disentanglement in variational autoencoders, 2018, **NeurIPS**

SlowVAE: Klindt et al., Towards non-linear disentanglement in natural data with temporal sparse coding, 2021, **ICLR**

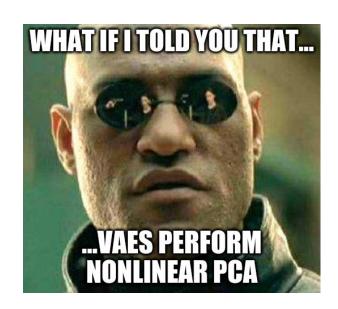

Why does it work?

What's the **inductive bias** in β -VAE based architectures and **datasets**?

VAE based methods have similarities to **PCA!**

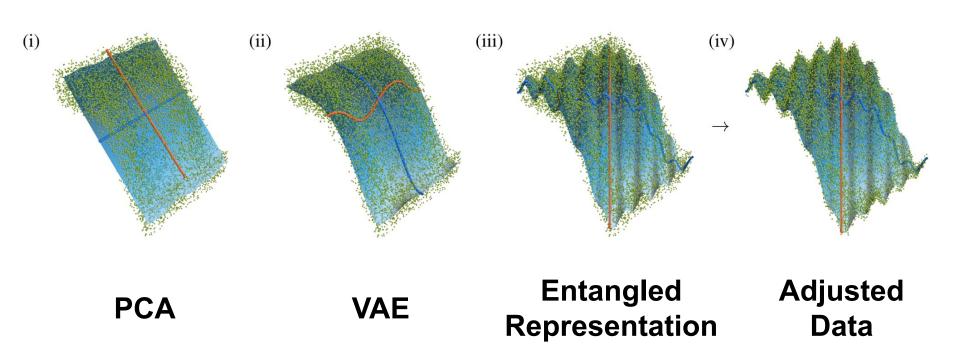
- Rolinek, Zietlow, Martius: Variational autoencoders
 pursue pca directions (by accident), 2019, CVPR
- Lucas et al.: Don't Blame the ELBO! A Linear VAE
 Perspective on Posterior Collapse, 2019, NeurlPS

Why does it work?

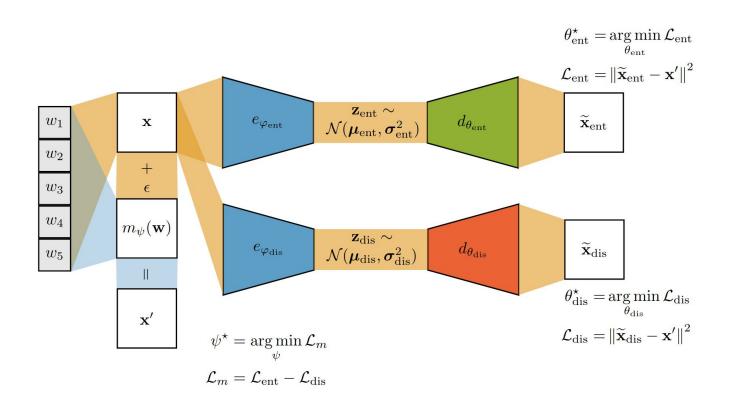


What's the **inductive bias** in β -VAE based architectures and **datasets**?

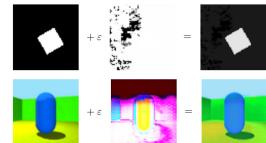
VAE based methods have similarities to PCA!


- Rolinek, Zietlow, Martius: Variational autoencoders
 pursue pca directions (by accident), 2019, CVPR
- Lucas et al.: Don't Blame the ELBO! A Linear VAE
 Perspective on Posterior Collapse, 2019, NeurlPS

What is the inductive bias in the data that aligns the non-linear PCA directions with the generating factors?


Can we alter the inductive bias in the data?

Model Based Dataset Manipulation



Model Based Dataset Manipulation

Small Data Perturbations Can Disrupt VAE Based Methods

	orig.	dSprites mod.	noise	orig.	Shapes3d mod.	noise
AE	0.09 ± 0.06	0.05 ± 0.02	0.06 ± 0.03	0.06 ± 0.03	0.05 ± 0.03	0.07 ± 0.03
β -VAE	0.23 ± 0.08	0.07 ± 0.09	0.14 ± 0.07	0.60 ± 0.31	0.09 ± 0.14	0.66 ± 0.05
Fac. VAE	0.27 ± 0.11	0.20 ± 0.12	0.16 ± 0.08	0.27 ± 0.18	0.07 ± 0.05	0.33 ± 0.20
TC-β-VAE	0.25 ± 0.08	0.14 ± 0.10	0.20 ± 0.04	0.58 ± 0.20	0.24 ± 0.16	0.60 ± 0.11
Slow-VAE	0.39 ± 0.08	0.27 ± 0.08	0.37 ± 0.09	0.53 ± 0.19	0.13 ± 0.08	0.60 ± 0.10
PCL	0.21 ± 0.03	0.24 ± 0.07	0.24 ± 0.07	0.44 ± 0.06	0.47 ± 0.08	0.40 ± 0.07
Weak sup. GAN	0.45 ± 0.05	0.36 ± 0.02	0.36 ± 0.01	0.69 ± 0.12	0.66 ± 0.12	0.77 ± 0.13

- Performance of VAE-based methods drop
- Non variational methods are robust against the dataset adjustments

THEY DO... RIGHT?

Small Data Perturbations Can Disrupt VAE Based Methods

	orig.	dSprites mod.	noise	orig.	Shapes3d mod.	noise
AE	0.09 ± 0.06	0.05 ± 0.02	0.06 ± 0.03	0.06 ± 0.03	0.05 ± 0.03	0.07 ± 0.03
β -VAE	0.23 ± 0.08	0.07 ± 0.09	0.14 ± 0.07	0.60 ± 0.31	0.09 ± 0.14	0.66 ± 0.05
Fac. VAE	0.27 ± 0.11	0.20 ± 0.12	0.16 ± 0.08	0.27 ± 0.18	0.07 ± 0.05	0.33 ± 0.20
TC-β-VAE	0.25 ± 0.08	0.14 ± 0.10	0.20 ± 0.04	0.58 ± 0.20	0.24 ± 0.16	0.60 ± 0.11
Slow-VAE	0.39 ± 0.08	0.27 ± 0.08	0.37 ± 0.09	0.53 ± 0.19	0.13 ± 0.08	
PCL	0.21 ± 0.03	0.24 ± 0.07	0.24 ± 0.07	0.44 ± 0.06	0.47 ± 0.08	
Weak sup. GAN	0.45 ± 0.05	0.36 ± 0.02	0.36 ± 0.01	0.69 ± 0.12	0.66 ± 0.12	

- Performance of VAE-based methods drop
- Non variational methods are robust against the dataset adjustments
- Even identifiable architectures are relying heavily on the data bias