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Delayed feedback in multi-armed bandit problems

Feedback is often delayed in real-world online learning applications, e.g.,

recommender systems and web advertisements;

adaptive clinical trials/optimizing for long-term engagements.

Several works about delayed feedback, e.g., in the adversarial setting,

Full information (Weinberger and Ordentlich, ����; Joulani et al., ����, ���6; Quanrud and Khashabi, ����)

Bandit feedback (Neu et al., ����; Cesa-Bianchi et al., ���6, ����; Thune et al., ����; Bistritz et al., ����; Zimmert

and Seldin, ����, ����)

This work:

Fully delay-adaptive version of Exp� with a remarkably simple proof technique.

First delay-adaptive method with a high-probability regret bound (based on
Exp�-IX).

First delay- and data-adaptive method.
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Adversarial bandit problem with delayed feedback

Protocol: For t = 1, 2, . . .

Learner chooses an action At 2 [K];

Suffers loss `t,At ;
I loss is revealed after delay dt, in round t+ dt;

Observes feedback (s,As, `s,As) for all s with s+ ds = t.

Goal: Minimize regret

RT (A
?) =

TX

t=1

E [`t,At ]�
TX

t=1

`t,A?

where A? = argmina2[K]

PT
t=1 `t,a, the optimal action in hindsight.

Assumptions: Loss sequence `1, . . . , `T and delay sequence d1, . . . , dT are selected in
advance.
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Adversarial bandit problem with delayed feedback
Regret in the delayed setting with bandit feedback

Constant delay: dt = d for all t 2 [T ] (Cesa-Bianchi et al., ���6, ����)

RT = O

⇣p
dT logK +KT logK

⌘
.

Arbitrary delays (Zimmert and Seldin, ����, ����)

RT = O

⇣p
D logK +KT

⌘
,

where D =
PT

t=1 dt is the cumulative delay.

Works for an a priori unknown D!

Question:
How to adapt Exp� (in a simple way) to work with an unknown D?

several unsuccessful attempts for adaptation (e.g., Thune et al., ����; Bistritz et al., ����).
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The Delay-Adaptive Exp� Algorithm (DAda-Exp�)
Delay-adaptive Exp� (without exploration)

Loss estimate (importance-weighted): ˆ̀t,i =
`t,iI [At = i]

pt,i
.

Action distribution: pt,i ⇠ exp
⇣
�⌘t

P
s:s+ds<t

ˆ̀
s,i

⌘
.

I uses only observed losses

Analysis

Non-delayed cheating algorithm: p̃t,i ⇠ exp
⇣
�⌘t

Pt
s=1

ˆ̀
s,i

⌘
.

Number of missing feedbacks: ⌧t =
Pt�1

s=1 I [s+ ds � t] (note:
PT

t=1 ⌧t = D).

Regret bound

RT  ⌘
�1
T log(K)
| {z }
cheating regret

+
TX

t=1

⌘t(⌧t +K)| {z }
using pt instead of p̃t
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The Delay-Adaptive Exp� Algorithm (DAda-Exp�)
Delay-adaptive Exp� (without exploration)

Loss estimate (importance-weighted): ˆ̀t,i =
`t,iI [At = i]

pt,i
.

Action distribution: pt,i ⇠ exp
⇣
�⌘t

P
s:s+ds<t

ˆ̀
s,i

⌘
.

I uses only observed losses

Analysis

Non-delayed cheating algorithm: p̃t,i ⇠ exp
⇣
�⌘t

Pt
s=1

ˆ̀
s,i

⌘
.

Number of missing feedbacks: ⌧t =
Pt�1

s=1 I [s+ ds � t] (note:
PT

t=1 ⌧t = D).

Regret bound

RT  3
p
log(K) (TK +D) for ⌘t =

s
log(K)

tK +
Pt

s=1 ⌧s

.
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Variants of DAda-Exp�

High-probability version:

Implicit exploration (Neu, ����): ˆ̀t,i =
`t,iI [At = i]

pt,i + ⌘t
.

Skipping bound:

Skip round s if ds proves to be too large (Zimmert and Seldin, ����, ����; Thune et al., ����).

Regret bound:

RT = O

✓p
KT log(K) + min

R⇢[T ]

n
|R|+

p
DR̄ log(K)

o◆

(guarantees both in expectation and with high-probability).
I R: arbitrary set of rounds.
I DR̄ =

P
t 62R dt: cumulative delay for rounds not in R.
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Delay- and Data-Adaptive Exp�
Data-dependent learning rate (based on the full-information technique of Joulani et al., ���6)

Computable: ⌘�1
t ⇡ (d?t )

2 +

vuut
KX

i=1

X

s:s+ds<t

X

r:sr+drs+ds

ˆ̀
s,i

ˆ̀
r,i(pr,i + ps,i)

needs a priori knowledge of the maximum delay d?t = maxst ds (similarly to Thune

et al., ����).
Implicit exploration: ˆ̀t,i = `t,iI[At=i]

pt,i+⌘t
.

Regret bound

RT = Õ

0

@d
?
T +

vuutlog(K)

 
d?TLT,A? +

KX

i=1

LT,i

!1

A

where LT,i =
PT

t=1 `t,i.

Similar to the data-dependent bound of Exp�.

Can be much smaller than Õ

⇣p
log(K)(D +KT )

⌘
.
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For more details and open problems, visit our poster!
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