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Delayed feedback in multi-armed bandit problems

Feedback is often delayed in real-world online learning applications, e.qg.,
@ recommender systems and web advertisements;

@ adaptive clinical trials/optimizing for long-term engagements.

Several works about delayed feedback, e.g., in the adversarial setting,
@ Full information (Weinberger and Ordentlich, 2002; Joulani et al., 2013, 2016; Quanrud and Khashabi, 2015)

@ Bandit feedback (Neu et al., 2014; Cesa-Bianchi et al., 2016, 2019; Thune et al., 2019; Bistritz et al., 2019; Zimmert
and Seldin, 2019, 2020)

This work:
@ Fully delay-adaptive version of Exp3 with a remarkably simple proof technique.

@ First delay-adaptive method with a high-probability regret bound (based on
Exp3-1X).

@ First delay- and data-adaptive method.
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Adversarial bandit problem with delayed feedback

Protocol: Fort =1,2,...
@ Learner chooses an action 4; € [K];
@ Suffersloss (, 4,;
» loss is revealed after delay d;, in round ¢ + d;

@ Observes feedback (s, Ay, 0, 4, ) forall s with s 4 d, = ¢.

Goal: Minimize regret

T

Rr(4%) = S E [fia,] Zm

t=1

where A* = argmin, ., >/, /1., the optimal action in hindsight.

Assumptions: Loss sequence /1, ...,/ and delay sequence dy, ..., dr are selected in
advance.
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Adversarial bandit problem with delayed feedback

Regret in the delayed setting with bandit feedback
@ Constant delay: d; = d for all ¢t € [T (cesa-Bianchi et al. 2016, 2019)

Rr=0 (\/dTlogK n KTlogK) .

@ Arbitrary delays (zimmert and seldin, 2019, 2020)
Ry =0 (x/Dlog K+ KT) ,

where D = ZtT:l d, is the cumulative delay.

Works for an a priori unknown D! J

Question:
How to adapt Exp3 (in a simple way) to work with an unknown D?

@ several unsuccessful attempts for adaptation (e.g., Thune et al, 2019; Bistritz et al., 2019).
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The Delay-Adaptive Exp3 Algorithm (DAda-Exp3)

Delay-adaptive Exp3  (without exploration)

. - b I[A; =4

@ Loss estimate (importance-weighted): ¢, ; = w
t,i

@ Action distribution: p; ; ~ exp (—ntzsﬁdsq és,)

» uses only observed losses
Analysis
@ Non-delayed cheating algorithm: j; ; ~ exp (—m S, 6”)

@ Number of missing feedbacks: 7, = Zt’l I[s+ds >1t] (otexT, m=D)

s=1
Regret bound

T
Rr < np'log(K) +>  m(n + K)
Y t=1 . Y .
cheating regret using p; instead of p;
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The Delay-Adaptive Exp3 Algorithm (DAda-Exp3)

Delay-adaptive EXp3 (without exploration)

. 1A =

@ Loss estimate (importance-weighted): /; ; = w
ti

@ Action distribution: p; ; ~ exp (—mzs;sﬂib@ ﬁs,>

» uses only observed losses

Analysis
@ Non-delayed cheating algorithm: p, ; ~ exp (—m S és,i)-

s=1

@ Number of missing feedbacks: 7, = Zt_l I[[s+ds>1] (ote: T, = D).

s=1

Regret bound

log(K)
tK + Eizl TS

Rr < 3y/log(K) (TK + D) for n, =
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Variants of DAda-Exp3

High-probability version:
b1 [A =]

@ Implicit exploration eu, 2019: (; ; =
: Pt + Mt

Skipping bound:
@ Skip round s if d, proves to be too large (zimmert and seldin, 2019, 2020; Thune et al., 2019).
@ Regret bound:
Ry =0 ( KT log(K) + min {|R| +vDp 1og(K)})
o

(guarantees both in expectation and with high-probability).

> R: arbitrary set of rounds.
» Dp =), d:: cumulative delay for rounds notin 72.
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Delay- and Data-Adaptive Exp3

o Data-dependent Iearning rate (based on the full-information technique of Joulani et al., 2016)

Computable: n; ' ~ (d})? $Z Z Z Coilri(pryi + ps,i)

1=1 s:s+ds<t ris<r+d,<s+dg

needs a priori knowledge of the maximum delay d; = max.<; d. (similarly to Thune
etal, 2019).
4 3 1[Ar=i]

@ Implicit exploration: ¢; ; = PR

Regret bound

K
Ry =0 | &5 + ,|log(K) (d;Lm* +) LT,i>

=i

where Ly, = 21 4,

@ Similar to the data-dependent bound of Exp3.
@ Can be much smaller than O <\/10g(K)(D + KT)).
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For more details and open problems, visit our poster!
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