Kernel Stein Discrepancy Descent

Anna Korba ¹ Pierre-Cyril Aubin-Frankowski ² Szymon Majewski ³ Pierre Ablin⁴

¹CREST/ENSAE, Institut Polytechnique de Paris ²CAS, MINES ParisTechs ³CMAP, Ecole Polytechnique, Institut Polytechnique de Paris ⁴CNRS & DMA, Ecole Normale Supérieure, Paris

This paper

We propose: Kernel Stein Discrepancy Descent (KSDD), a sampling algorithm that builds a sequence of probability measures $(\mu_n)_n$ targeting a distribution $\pi(x) \propto \exp(-V(x))$, where $V : \mathbb{R}^d \to \mathbb{R}$, in the Kernel Stein Discrepancy (KSD) sense.

Study: Theoretical and empirical convergence of KSD Descent.

Background on KSD

For $\mu, \pi \in \mathcal{P}_2(\mathbb{R}^d)$, the KSD of μ relative to π is $KSD(\mu|\pi) = \sqrt{\iint k_{\pi}(x,y)d\mu(x)d\mu(y)}$,

where $k_{\pi}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is the **Stein kernel**, defined through

- a score function $s(x) = \nabla \log \pi(x)$,
- a p.s.d. kernel $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}, k \in C^2(\mathbb{R}^d)$.

For $x, y \in \mathbb{R}^d$,

$$k_{\pi}(x,y) = k(x,y)s(x)^{\mathsf{T}}s(y) + \nabla_{2}k(x,y)^{\mathsf{T}}s(x) + \nabla_{1}k(x,y)^{\mathsf{T}}s(y) + \nabla \cdot_{1}\nabla_{2}k(x,y)$$

KSD can be computed when

- one has access to the score of π
- μ is a discrete measure, e.g. $\mu = \frac{1}{N} \sum_{i=1}^{N} \delta_{x^i}$, then:

$$KSD^{2}(\mu|\pi) = \frac{1}{N^{2}} \sum_{i,j=1}^{N} k_{\pi}(x^{i}, x^{j}).$$

KSD metrizes weak convergence [2] when:

- π is strongly log-concave at infinity (distantly dissipative), e.g. true gaussian mixtures
- k has a slow decay rate, e.g. true when k is the IMQ kernel defined by $k(x,y) = (c^2 + ||x-y||_2^2)^{\beta}$ for c > 0 and $\beta \in (-1,0)$.

KSD Descent

Draw samples from π by minimizing $KSD^2(\mu|\pi)$ with Wasserstein gradient flow. With discrete measure, equivalent to Euclidean gradient flow on particule positions.

Implementation

We propose two ways to implement KSD Descent:

Algorithm 1 KSD Descent GD

Input: initial particles $(x_0^i)_{i=1}^N \sim \mu_0$, number of iterations M, step-size γ

for n=1 to M do

$$[x_{n+1}^i]_{i=1}^N = [x_n^i]_{i=1}^N - rac{2\gamma}{N^2} \sum_{j=1}^N [
abla_2 k_\pi(x_n^j, x_n^i)]_{i=1}^N,$$
 end for

Return: $[x_M^i]_{i=1}^N$.

Algorithm 2 KSD Descent L-BFGS

Input: initial particles $(x_0^i)_{i=1}^N \sim \mu_0$, tolerance tol Return: $[x_*^i]_{i=1}^N = \text{L-BFGS}(L, \nabla L, [x_0^i]_{i=1}^N, \text{tol})$.

L-BFGS [3] is a quasi Newton algorithm that is faster and more robust than Gradient Descent, and requires no choice of step-size!

Related work

1. Minimize the Kullback-Leibler divergence, e.g. with Stein Variational Gradient descent (SVGD) [4] (requires $\nabla \log \pi$).

Uses a set of N interacting particles and a p.s.d. kernel $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ to approximate π :

$$x_{n+1}^i = x_n^i - \gamma \left[\frac{1}{N} \sum_{j=1}^N k(x_n^i, x_n^j) \nabla \log \pi(x_n^j) + \nabla_1 k(x_n^j, x_n^i) \right]$$
Gaussian in 1D, with 30 particles.

Does not minimize a closed-form functional for discrete measures!

2. Minimize the Maximum Mean Discrepancy [1] (requires samples $(y_j)_{j=1}^N \sim \pi$):

$$x_{n+1}^i = x_n^i - \gamma \left[\frac{1}{N} \sum_{j=1}^N \left(\nabla_2 k(x_n^j, x_n^i) - \nabla_2 k(y^j, x_n^i) \right) \right].$$

Theory - W_2 convexity of the KSD

The underlying geometry is the one of $(\mathcal{P}_2(\mathbb{R}^d), W_2)$.

Our (negative) result: under mild assumptions on π and k, exponential convergence of the KSD flow near π does not hold (even for π gaussian!)

Trajectories of the particles

Green points = the initial positions of the particles. Light grey curves = their trajectories.

Trajectories of the particles driven by different algorithms to a 2d standard Gaussian.

Importance of the step size

Convergence speed of KSD and SVGD to a standard Gaussian in 1D, with 30 particles.

Failure cases of KSD Descent

Green crosses = initial particle positions

Blue crosses = final positions

Light red arrows = score directions.

In the paper:

- theoretically: we explain how particles can get stuck in planes of symmetry of the target π
- numerically: convergence fixed with an annealing strategy: $\pi^{\beta}(x) \propto \exp(-\beta V(x))$, with $0 < \beta \le 1$ (i.e. multiply the score by β .)

Bayesian inference

Bayesian logistic regression.

Accuracy of the KSD descent
and SVGD for 13 datasets.

Both methods yield similar re-

sults. KSD is better by 2% on

one dataset. Bayesian ICA.

Each dot correspond to the Amari distance between an estimated matrix and the true unmixing matrix.

Conclusion

Pros:

- KSD Descent is simple and can be used with L-BFGS (fast, and does not require the choice of a step-size as in SVGD)
- works well on log-concave targets (unimodal gaussian, Bayesian logistic regression with gaussian priors)

Cons:

- KSD is not convex w.r.t. W_2 , and no exponential decay near equilibrium holds
- does not work well on non log-concave targets (mixture of isolated gaussians, Bayesian ICA)

Code

Python package to try KSD descent yourself: pip install ksddescent

Site:pierreablin.github.io/ksddescent/ Also features pytorch/numpy code for SVGD.

- [1] M. Arbel, A. Korba, A. Salim, and A. Gretton. Maximum mean discrepancy gradient flow. In *NeurIPS*, 2019.
- [2] J. Gorham and L. Mackey. Measuring sample quality with kernels. In *ICML*, 2017.
- [3] D.C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. *Math. programming*, 1989.
- [4] Q. Liu and D. Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm. In *NeurIPS*, 2016