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This paper

We propose: Kernel Stein Discrepancy Descent
(KSDD), a sampling algorithm that builds a se-
quence of probability measures (u,), targeting a

distribution 7(z) o< exp(—V(z)), where V : R? —
R, in the Kernel Stein Discrepancy (KSD) sense.

Study : Theoretical and empirical convergence of
KSD Descent.

Background on KSD

For p1, ™ € Po(RY), the KSD of u relative to 7 is

KSD(ulm) = \/ [ kal, y)dp(x)dp(y).

where k. : RYxR? — R is the Stein kernel, defined
through

e a score function s(x) = Vlog w(x),
oaps.d. kernel k: R x RY — R, k € C*(RY).

For z,y € R,

ke, y) =k(z,y)s(x) "s(y) + Vok(z,y) ' s(x)
+ Vik(z,y) "s(y) + V «; Vok(z, y)

KSD can be computed when

e one has access to the score of
e /. is a discrete measure, e.g. [ = % Zz’]\il 0., then

1 N S
o ke(x',x?).

KSD*(u|m) = —
(lu‘ ) NQZ"j:l

KSD metrizes weak convergence 2| when:

o 1 is strongly log-concave at infinity (distantly dissi-
pative), e.g. true gaussian mixtures

o t has a slow decay rate, e.g. true when k is the IMQ)
kernel defined by k(z,v) = (¢ + ||z —y]|3)” for ¢ > 0
and g € (—1,0).

KSD Descent

Draw samples from 7 by minimizing KSD*(u|7) with
Wasserstein gradient flow. With discrete measure,
equivalent to Euclidean gradient flow on particule po-

s1tions.

Implementation

We propose two ways to implement KSD Descent:

Algorithm 1 KSD Descent GD

Input: initial particles (z})% ,
tions M, step-size 7y
forn =1to M do

i i 27 Z i
[mn—l—l]i\;l — [mn]fil NS [VQk?T(:Bgumn)]il?
N
end for 7=1

Return: [z, ;.

~ 19, number of itera-

Algorithm 2 KSD Descent L-BFGS
Input: initial particles (z})%

1=1

Return: [z%]Y , = L-BFGS(L, VL, [z}], tol).

~ lip, tolerance tol

[-BFGS [3] is a quasi Newton algorithm that is faster
and more robust than Gradient Descent, and re-
quires no choice of step-size!

Related work

1. Minimize the Kullback-Leibler divergence .
e.g. with Stein Variational Gradient descent
(SVGD) [4] (requires V log ).

Uses a set of IV interacting particles and a p.s.d. kernel
k:RY x RY — R to approximate 7

Trajectories of the particles
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Green points = the initial positions of the particles.
Light grey curves = their trajectories.

Trajectories of the particles driven by different algo-
rithms to a 2d standard Gaussian.

Importance of the step size
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Convergence speed of KSD and SVGD to a standard

x%ﬁrl =T, — [% Zﬁ'vzl k(x),, x),)V log m(x]) + Vik(z), f%)} Gaussian in 1D, with 30 particles.

Does not minimize a closed-form functional for discrete
measures!

2. Minimize the Maximum Mean Discrepancy

1] (requires samples (y;) ",

¥ = o= 7 [L 5 (Vok(ad, ab) — Vak(yl, 1))

~ T )

Theory - W, convexity of the KSD

The underlying geometry is the one of (Py(RY), W)

- Ty P2(RY) = VC(RY)

Po(RY)

Our (negative) result: under mild assumptions
on m and k, exponential convergence of the KsSD flow
near m does not hold (even for m gaussian!)

Failure cases of KSD Descent
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Green crosses = initial particle positions
Blue crosses = final positions

In the paper:

e theoretically: we explain how particles can get
stuck in planes of symmetry of the target o

e numerically: convergence fixed with an annealing
strategy: 7w (x) oc exp(—AV(x)) , with 0 < 8 < 1
(i.e. multiply the score by £.)

Bayesian inference

Bayesian logistic regression.

Accuracy of the KSD descent
and SVGD for 13 datasets.
Both methods yield similar re-

sults. KSD is better by 2% on
S osveD one dataset.

| Bayesian 1CA.
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Amari distance between an es-
timated matrix and the true

Amari distance

unmixing matrix.

Conclusion

Pros:

e KSD Descent is simple and can be used with L-BFGS
(fast, and does not require the choice of a step-size

as in SVGD)

e works well on log-concave targets (unimodal gaus-
sian, Bayesian logistic regression with gaussian pri-
ors)

Cons:

e KSD is not convex w.r.t. Ws, and no exponential
decay near equilibrium holds

e does not work well on non log-concave targets (mix-
ture of isolated gaussians, Bayesian ICA)

Python package to try KSD descent yourself:
pip install ksddescent

Site:pierreablin.github.io/ksddescent/

Also features pytorch /numpy code for SVGD.
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