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This paper

We propose: Kernel Stein Discrepancy Descent
(KSDD), a sampling algorithm that builds a se-
quence of probability measures (µn)n targeting a
distribution π(x) ∝ exp(−V (x)), where V : Rd →
R, in the Kernel Stein Discrepancy (KSD) sense.

Study : Theoretical and empirical convergence of
KSD Descent.

Background on KSD

For µ, π ∈ P2(Rd), the KSD of µ relative to π is

KSD(µ|π) =
√∫∫

kπ(x, y)dµ(x)dµ(y),

where kπ : Rd×Rd→ R is the Stein kernel, defined
through
• a score function s(x) = ∇ log π(x),
• a p.s.d. kernel k : Rd × Rd→ R, k ∈ C2(Rd).

For x, y ∈ Rd,
kπ(x, y) =k(x, y)s(x)>s(y) +∇2k(x, y)>s(x)

+∇1k(x, y)>s(y) +∇ ·1∇2k(x, y)

KSD can be computed when
• one has access to the score of π
•µ is a discrete measure, e.g. µ = 1

N

∑N
i=1 δxi, then :

KSD2(µ|π) = 1
N 2

N∑
i,j=1

kπ(xi, xj).

KSD metrizes weak convergence [2] when:
•π is strongly log-concave at infinity (distantly dissi-
pative), e.g. true gaussian mixtures
•k has a slow decay rate, e.g. true when k is the IMQ
kernel defined by k(x, y) = (c2+‖x−y‖2

2)β for c > 0
and β ∈ (−1, 0).

KSD Descent

Draw samples from π by minimizing KSD2(µ|π) with
Wasserstein gradient flow. With discrete measure,
equivalent to Euclidean gradient flow on particule po-
sitions.

Implementation

We propose two ways to implement KSD Descent:

L-BFGS [3] is a quasi Newton algorithm that is faster
and more robust than Gradient Descent, and re-
quires no choice of step-size!

Related work

1. Minimize the Kullback-Leibler divergence ,
e.g. with Stein Variational Gradient descent
(SVGD) [4] (requires ∇ log π).
Uses a set ofN interacting particles and a p.s.d. kernel
k : Rd × Rd→ R to approximate π:

xin+1 = xin − γ
[ 1
N

∑N
j=1 k(xin, xjn)∇ log π(xjn) +∇1k(xjn, xin)

]
Does not minimize a closed-form functional for discrete
measures!
2. Minimize the Maximum Mean Discrepancy
[1] (requires samples (yj)Nj=1 ∼ π ):

xin+1 = xin − γ
[ 1
N

∑N
j=1
(
∇2k(xjn, xin)−∇2k(yj, xin)

)]
.

Theory - W2 convexity of the KSD

The underlying geometry is the one of (P2(Rd),W2).

Our (negative) result: under mild assumptions
on π and k, exponential convergence of the KSD flow
near π does not hold (even for π gaussian!)

Trajectories of the particles
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Green points = the initial positions of the particles.
Light grey curves = their trajectories.
Trajectories of the particles driven by different algo-
rithms to a 2d standard Gaussian.

Importance of the step size
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Convergence speed of KSD and SVGD to a standard
Gaussian in 1D, with 30 particles.

Failure cases of KSD Descent

Green crosses = initial particle positions
Blue crosses = final positions
Light red arrows = score directions.
In the paper:
• theoretically: we explain how particles can get
stuck in planes of symmetry of the target π
•numerically: convergence fixed with an annealing
strategy: πβ(x) ∝ exp(−βV (x)) , with 0 < β ≤ 1
(i.e. multiply the score by β.)

Bayesian inference
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Bayesian logistic regression.
Accuracy of the KSD descent
and SVGD for 13 datasets.
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.

Random KSD SVGD
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Bayesian ICA.
Each dot correspond to the
Amari distance between an es-
timated matrix and the true
unmixing matrix.

Conclusion

Pros:
•KSD Descent is simple and can be used with L-BFGS
(fast, and does not require the choice of a step-size
as in SVGD)
•works well on log-concave targets (unimodal gaus-
sian, Bayesian logistic regression with gaussian pri-
ors)

Cons:
•KSD is not convex w.r.t. W2, and no exponential
decay near equilibrium holds
•does not work well on non log-concave targets (mix-
ture of isolated gaussians, Bayesian ICA)

Code

Python package to try KSD descent yourself:
pip install ksddescent
Site:pierreablin.github.io/ksddescent/
Also features pytorch/numpy code for SVGD.
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