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Introduction

o Consider training quantized neural networks for efficient machine
learning models

fl@) =)o@ uj)ay (1)

where u; € {—1,1}? and ; € R. This is a two-layer fully connected

architecture with scalar output, f(x): R? — R (see the paper for
extension to different architectures).
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Activation Functions

@ The theory holds for quadratic activation o(u) = u?, degree-2

polynomial activation o(u) = au? + bu + ¢, and bilinear activation
X — ul Xv where X := zaT

@ We show that bilinear activation NN can be represented as a
polynomial activation NN.
@ It is demonstrated in (Allen-Zhu, Li, 2020)1 that the degree-2

polynomial activation performs comparably to RelLU activation in
deep networks.
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Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep learning.
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Problem Setup

o Let X € R™*? denote the data matrix and y € R™ denote the output
vector.

@ Combinatorial NP-hard problem:

Pt = min CFX) )+ Bd Y gl (2)
j=1

S.t.u;je{-1,1}4,a;€R je[m]
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Lower Bounding SDP

o For bilinear activation, we obtain the lower-bounding problem via
duality as

Py > dpspp = I(E?liﬂ (g, y) + Bdp

P
s.t. ¥ :21';in, 1=1,...,n
vV Z
= 0.

@ This is a convex SDP, which can be solved efficiently in polynomial
time.
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Algorithm

Algorithm 1: Sampling algorithm for quantized neural networks

@ Solve the SDP in (3). Define the scaled matrix Z¥ < Z*/p*.
@ Solve the problem

= i —sin(yZH)||% . 4
@ i=marg  min | 1Qaz) —sin(y 20l (4)
© Sample the first layer weights uq, ..., Um,v1,. .., Vn from

multivariate normal distribution as [ﬂ ~ sign(N(0,Q*)) and set the

second layer weights as a;; = *Wim, V.
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Main Result

Theorem

Let 6 represent the neural network weights uj,v; € {—1, —i—l}d, aj €R,

7 =1,...,m. Algorithm 1 returns a neural network with Weightsé that
achieve near optimal loss, i.e.,

V(fé(X), y) — €(for (X), y)) <e (5)

with high probability. The weights 0* are the optimal network weights for
the non-convex combinatorial problem.
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Numerical Results

@ Cost against the number of neurons m on the training (left) and the
test (right) sets. Dataset X has been synthetically generated and has
dimensions n = 100, d = 20.
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Numerical Results

o Classification accuracy on the training (left) and test (right) sets
against wall-clock time for the credit approval dataset with

n =552,d = 15.
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Discussion

@ We have shown that bilinear activation architectures with binary
quantization are sufficient to train optimal multi-level quantized
networks with polynomial activations.

@ We have developed a sampling algorithm to generate quantized neural
networks using the lower-bounding SDP by leveraging Grothendieck’s
identity and the connection to approximating the cut norm.

@ Future direction: Application of the proposed algorithm in layerwise
training.
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