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Introduction

Consider training quantized neural networks for efficient machine
learning models

f(x) =

m∑
j=1

σ(xTuj)αj (1)

where uj ∈ {−1, 1}d and αj ∈ R. This is a two-layer fully connected
architecture with scalar output, f(x) : Rd → R (see the paper for
extension to different architectures).
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Activation Functions

The theory holds for quadratic activation σ(u) = u2, degree-2
polynomial activation σ(u) = au2 + bu+ c, and bilinear activation
X → uTX v where X := xxT .

We show that bilinear activation NN can be represented as a
polynomial activation NN.

It is demonstrated in (Allen-Zhu, Li, 2020)1 that the degree-2
polynomial activation performs comparably to ReLU activation in
deep networks.
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1
Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep learning.
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Problem Setup

Let X ∈ Rn×d denote the data matrix and y ∈ Rn denote the output
vector.

Combinatorial NP-hard problem:

p∗ = min
s.t.uj∈{−1,1}d,αj∈R j∈[m]

` (f(X), y) + βd

m∑
j=1

|αj | . (2)
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Lower Bounding SDP

For bilinear activation, we obtain the lower-bounding problem via
duality as

p∗b ≥ dbSDP := min
Q,ρ

` (ŷ, y) + βdρ

s.t. ŷi = 2xTi Zxi, i = 1, . . . , n

Qjj = ρ, j = 1, . . . , 2d

Q =

[
V Z
ZT W

]
� 0 . (3)

This is a convex SDP, which can be solved efficiently in polynomial
time.
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Algorithm

Algorithm 1: Sampling algorithm for quantized neural networks

1 Solve the SDP in (3). Define the scaled matrix Z∗s ← Z∗/ρ∗.

2 Solve the problem

Q∗ := arg min
Q�0,Qjj=1∀j

‖Q(12) − sin(γZ∗s )‖2F . (4)

3 Sample the first layer weights u1, . . . , um, v1, . . . , vm from

multivariate normal distribution as

[
u
v

]
∼ sign(N (0, Q∗)) and set the

second layer weights as αj = ρ∗ π
γm , ∀j.
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Main Result

Theorem

Let θ represent the neural network weights uj , vj ∈ {−1,+1}d, αj ∈ R,
j = 1, . . . ,m. Algorithm 1 returns a neural network with weights θ̂ that
achieve near optimal loss, i.e.,∣∣∣`(fθ̂(X), y

)
− `
(
fθ∗(X), y

)∣∣∣ ≤ ε (5)

with high probability. The weights θ∗ are the optimal network weights for
the non-convex combinatorial problem.
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Numerical Results

Cost against the number of neurons m on the training (left) and the
test (right) sets. Dataset X has been synthetically generated and has
dimensions n = 100, d = 20.
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Numerical Results

Classification accuracy on the training (left) and test (right) sets
against wall-clock time for the credit approval dataset with
n = 552, d = 15.
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Discussion

We have shown that bilinear activation architectures with binary
quantization are sufficient to train optimal multi-level quantized
networks with polynomial activations.

We have developed a sampling algorithm to generate quantized neural
networks using the lower-bounding SDP by leveraging Grothendieck’s
identity and the connection to approximating the cut norm.

Future direction: Application of the proposed algorithm in layerwise
training.
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