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(Stationary) Best Arm Identification

Stochastic Bandits
A learning policy π sequentially picks one of K options (arms).
Pulled arm yields loss randomly drawn according to an unknown but fixed distribution.

BAI Objective: Identify the best arm, the one with smallest expected loss.
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Finding the Best Learner

Learners are not static, they tend to improve their skills with experience. Hence, their
expected losses are a function of the number of times they have been selected.
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Best Model Identification: a Rested-bandit Formulation
I Pulling arm i ∈ K = {1, . . . , k} at time t, when it was played τ = τ(i, T ) times, yields

random loss with expectation:

µi(τ) = αi
τρ

+ βi

where ρ ∈ (0, 1] and αi, βi ∈ R0+.

I After T interactions π has to commit to one arm iout ∈ K.We let τout = τ(iout, T ) be the
number of pulls of iout after T rounds.

I Objective minimize the pseudo-regret:
RT (π) = µiout(τout)− µi∗T (T )

where i∗T = arg mini∈K µi(T ) (notice that iout, τout are both random variables).
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Theoretical Guarantees

Paper outcome:
I We propose an efficient arm-elimination policy;

I A new trade-off emerges: exploration vs best-arm identification;
I We prove upper bound on the regret it incurs;
I We prove a matching lower-bound (up to logarithmic factors) for the case where K = 2.
I Our bounds strongly depend on the interplay among parameters (αi, βi)Ki=1 , T

Hence, our policy is optimal (up to logs)!
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