Learning Fair Policies in Decentralized Cooperative Multi-Agent Reinforcement Learning

Matthieu Zimmer*, Claire Glanois*, Umer Siddique and Paul Weng

Univ. of Michigan-Shanghai Jiao Tong Univ. Joint Institute

ICML - July 2021

*Equal contribution

Motivations

Examples

Traffic light control

Framework

Dec-POMDP $(S, A = (A_i)_{i \in [N]}, (O_i)_{i \in [N]}, P, (\Omega_i)_{i \in [N]}, \mathbf{r}, \gamma)$

- ▶ vectorial reward function $r : S \times A \rightarrow \mathbb{R}^D$ where D is the number of users
- ▶ partial reward observability: an agent *i* observes $\mathbf{r}_{l_i} = (r_k)_{k \in I_i}$ where $l_i \subseteq [D]$

Propositions

Optimizing Social Welfare Functions

$$\max_{\boldsymbol{\theta}} \mathfrak{J}(\boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \phi(\boldsymbol{J}_{l_1}(\theta_1), \dots, \boldsymbol{J}_{l_N}(\theta_N))$$

where $\phi : \mathbb{R}^D \to \mathbb{R}$ is a social welfare function, such as:

► Generalized Gini social welfare function: $G_{w}(u) = \sum_{k \in [D]} w_k u_k^{\uparrow}$

•
$$\alpha$$
-fairness: $\phi_{\alpha}(\boldsymbol{u}) = \sum_{k \in [D]} \frac{u_k^{1-\alpha}}{1-\alpha}$

Fairness properties

Impartiality, Efficiency, Pigou-Dalton principle

Advantage sharing

- No need for a centralized critic
- Less communication needed

Theorem

Under standard assumptions, the SWF objective $\mathfrak{J}(\theta^k)$ converges almost surely and with a sub-linear convergence rate within a radius of convergence $\tilde{\mathfrak{r}}$ of the optimal value \mathfrak{J}^* where $\tilde{\mathfrak{r}}$ depend on the approximation errors of (a) estimating J, (b) estimating A(o, a), and (c) ignoring the effects of one agent's action over other agents.

- Corollary providing a high-probability bound on the number of iterations before convergence
- Reducing (b) by learning two critics per agents

Self-Oriented Team-Oriented (SOTO) Architecture

- ▶ Transfer learning with advice taking: the self-oriented policy advises the team-oriented policy
- Learning from two losses from two critics
- Progressively switch from the self-oriented policy to the team-oriented one

Conclusion

Fair optimization in multi-agent reinforcement learning

- Scalable (no centralized critic nor centralized policy)
- Evaluation on two scenarios and 5 domains
 - Centralized learning with decentralized execution
 - Fully decentralized
- Convergence proof

Future directions

- Learning the communications
- Relaxation of impartiality