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Dec-POMDP (S, A = (Ai)icin)> (Oi)icins Py (Qi)ieings 1:7)

> vectorial reward function r : S x A — RP where D is the number of users

> partial reward observability: an agent i observes r, = (ri)ke), where [; C [D]
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Propositions

Optimizing Social Welfare Functions

max J3(8) = max ¢(Jy (1), - - i, (Ow))

where ¢ : RP — R is a social welfare function, such as:
> Generalized Gini social welfare function: G (u) = > 4c(p; wyu)

ul—a
k

> a-fairness: ¢ (u) = Zke[D] =

Fairness properties

» Impartiality, Efficiency, Pigou-Dalton principle

Advantage sharing
» No need for a centralized critic

» |ess communication needed
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Theoretical Analysis

Theorem

Under standard assumptions, the SWF objective J(0%) converges almost surely and with a
sub-linear convergence rate within a radius of convergence t of the optimal value J* where
t depend on the approximation errors of (a) estimating J, (b) estimating A(o, a), and (c)
ignoring the effects of one agent’s action over other agents.

» Corollary providing a high-probability bound on the number of iterations before convergence

> Reducing (b) by learning two critics per agents
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Self-Oriented Team-Oriented (SOTO) Architecture

» Transfer learning with advice taking: the self-oriented policy advises the team-oriented policy

» Learning from two losses from two critics

» Progressively switch from the self-oriented policy to the team-oriented one

self-oriented policy

team-oriented policy

hidden layers
action
distribution

observations
hidden layers
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Conclusion

Fair optimization in multi-agent reinforcement learning
> Scalable (no centralized critic nor centralized policy)

» Evaluation on two scenarios and 5 domains

» Centralized learning with decentralized execution

» Fully decentralized

» Convergence proof

Future directions

» Learning the communications

» Relaxation of impartiality
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