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Epistemic Uncertainty in Deep Learning

We study the problem of variational inference (VI) for quantifying uncertainty in deep learning

By reasoning under uncertainty, we can apply deep learning to safety-critical domains




Bayesian Neural Networks

Variational Inference has proven difficult to apply to neural networks.
Prior work assumes posterior over neural network parameters from a simple family [1] [2] [3]

o Analytically known distributions not flexible enough to model large neural networks

o Known to underestimate epistemic uncertainty




Particle-based Variational Inference

Particle-based variational inference (ParVl) Is a recent nonparametric method for Bayesian inference

ParVI approximates the posterior with an empirical distribution of samples [4] [5]

o Quantify epistemic uncertainty by measuring entropy in posterior predictive distribution

o No way to draw additional samples

initial particles ~ g, target p
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Generative Particle Variational Inference

We propose GPVI: a generative counterpart to particle based VI
The generator f minimizes KL[q¢(x)||p(x)], where q¢(x) is the generated distribution

To apply GPVI on BNNs, the generator outputs weight vectors for NNs

Backpropagate functional gradient

z~N(0,1)




Functional Gradient of J(f)=KL[qy||p]

The functional gradient V¢ J(f) tells us how we should change f to fit p(x)

We can express this in closed form when f is from an RKHS with kernel k
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To update the parameters 6 of f , we backpropagate the functional gradient to &
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Estimating the Repulsive Term

0 g L
The repulsive term (a;) V,1k(z', z) is difficult to compute due to Jacobian inverse
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We use a helper network h to predict (

Train with 1 step of gradient descent, per training step of f
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Bayesian Neural Networks: Classification

* GPVI: sampled classification functions have intuitive predictive uncertainty
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Bayesian Neural Networks: Open Category Prediction

Open Category Prediction: detect new classes unseen during training
o MNIST & CIFAR-10.

o 6 training classes, 4 evaluation classes

MNIST 'CIFAR-10
Method Clean AUCT ECE | Method Clean AUC 1 ECE |
SVGD 99.3 989 + .001 | .001 £ .0002 SVGD 0.3 683 + .008 | .055 4+ .004
GFSF 99.2 | 988 +.003 | .002 4+ .0003 GFESF 80.6 | .681 +.004 | .068 + .012
KSD 97.7 | .964 +.005 | .014 + .0007 Amortized SVGD | 71.12 | .636 &+ .018 | .073 £+ .029
Amortized SVGD | 99.1 | .958 £.015 | .002 £ .0007 Amortized GFSF | 71.09 | .583 +.007 | .042 + .029
Amortized GFSF 9092 | 978 4+ .005 | .004 & .0013 ME-V] 70.0 | 649 = 006 | .016 = .002
Amortized KSD 977 | 951 £.008 | .017 £ .0010 Deep Ensemble 7354 | 652 - 018 | 033 = 011
ME-VI 8.6 | 951 =.008 | .014 = .0027 GPVI 762 | .677 = .008 | .018 £ .015
Deep Ensemble 99.3 | .972 +£.002 | .008 £ .0060
GPVI 99.3 | .988 +.001 | .001 £ .0005
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Summary of Contributions

O GPVI is a new method for approximate Bayesian inference

O We retain the asymptotic accuracy of particle-based VI, also allow sampling
O Helper network allows for generators with flexible architectures

O Competitive uncertainty estimation for Bayesian neural networks

O Classification, Regression, Open-category prediction
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Come view our poster in GatherTown!
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