APS: Active Pretraining with Successor Features

Hao Liu, Pieter Abbeel

Big picture and key challenges

Reinforcement Learning: task specific, difficult to generalize to new tasks

Generalization to new tasks

- Vision (SimCLRv2, DINO):
 - Pre-train on ImageNet -> finetune for other tasks
- NLP (GPT-*, BERT):
 - Pre-train on internet text -> finetune for other tasks
- Reinforcement Learning:
 - ???????????????? -> finetune for other tasks

Problem setting: Open-ended Environments

• Pretraining without accessing environment reward function

=> Finetuning on different downstream reward functions

Variational Approximation as Intrinsic Reward

• Prior work aim to maximize MI between states and some conditioning variables

$$I(s;z) = \mathcal{H}(z) - \mathcal{H}(z|s)$$

$$-\mathcal{H}(z|s) \geq \ \mathbb{E}_{\pi_z}[\log q(z|s)]$$

Insufficient Exploration

For usual decomposition of mutual information

$$I(s;z) = \mathcal{H}(z) - \mathcal{H}(z|s)$$

Predict latent variables from states
No incentive to explore

Scaling Law

• Large amount of data is important for unsupervised pretraining

Explore the environment

But how does the agent know where to explore

Intrinsic Reward for Entropy Maximization

Incentivizing exploration by introducing intrinsic rewards based on a measure of state novelty

State entropy as intrinsic reward

$$\mathcal{H}(s) = -\mathbb{E}_{s \sim p(s)} \left[\log p(s) \right]$$

Measuring state entropy is intractable to compute in most setting

K-Nearest-Neighbor Entropy Estimation

• K-nearest entropy estimator [1], asymptotically consistent and unbiased

$$\mathcal{H}(s) = -\mathbb{E}_{s \sim p(s)} \left[\log p(s) \right]$$

K-NN Entropy Pretraining is Powerful

• Finetuning last few layers of pretrained model significantly outperform training from scratch [1, 2, 3, 4, 5]

[5] RE3: State Entropy Maximization with Random Encoders for Efficient Exploration, Seo*, Chen*, et al, 2021

^[1] APT: Behavior From the Void: Unsupervised Active Pre-Training, Liu & Abbeel, 2020

^[2] MEPOL: Task-Agnostic Exploration via Policy Gradient of a Non-Parametric State Entropy Estimate, Mutti et al, 2020

^[3] CPT: Coverage as a Principle for Discovering Transferable Behavior in Reinforcement Learning, Campos et al, 2021

^[4] ProtoRL: Reinforcement Learning with Prototypical Representations, Yarats et al, 2021

One pretrained model for many tasks

• Prior work on entropy maximization pretraining finetune the model for each task

Finetuning for each downstream task reward function is expensive and inefficient

Explicit Entropy Maximization in MI

Decomposing mutual information into explicit exploration and exploitation

$$I(s;z) = \mathcal{H}(s) - \mathcal{H}(s|z)$$

- Exploring by particle-based entropy
- Learning latent variable conditioned policy

• Intrinsic reward consists of entropy exploration and learning latent skills

$$ext{intrinsic reward} = r_{ ext{entropy}} + r_{ ext{sklll}}$$

Successor Features

• Using successor features [1, 2] as parameterization

$$egin{aligned} -\mathcal{H}(s|z) &\geq & \mathbb{E}_{\pi_z}[\log q(s|z)] = & \mathbb{E}_{\pi_z}[\phi(s)^ op z] \ Q^\pi(s,a) &= & \mathbb{E}_{a_t=s,a_t=a}igg[\sum_{i=t}^\infty \gamma^{i-t}\phiig(s_{i+1},a_{i+1},s_{i+1}'ig)igg]^ op z \ &\equiv \psi^\pi(s,a)^ op z \end{aligned}$$

Quickly adapt to new reward by identifying downstream task by linear regression

^[1] Successor features for transfer in reinforcement learning. Barreto et al.

^[2] Fast Task Inference with Variational Intrinsic Successor Features. Hansen et al.

Evaluation Setting

- Unsupervised pretraining for 200M steps per env without environment reward function
- Data efficiency benchmark: agents are allowed only 100k steps which is ~2 hours of real-time gameplay

Results

SOTA RL train from $I(s;z)=\mathcal{H}(z)-\mathcal{H}\mathcal{H}(s)$ has each ours

Game	Random	Human	SimPLe	DER	CURL	DrQ	SPR	VISR	APT	APS (ours)
Alien	227.8	7127.7	616,9	739.9	558.2	771.2	801.5	364.4	2614.8	934.9
Amidar	5.8	1719.5	88.0	188.6	142.1	102.8	176.3	186.0	211.5	178.4
Assault	222.4	742.0	527.2	431.2	600.6	452.4	571.0	12091.1	891.5	413.3
Asterix	210.0	8503.3	1128.3	470.8	734.5	603.5	977.8	6216.7	185.5	1159.7
Bank Heist	14.2	753.1	34.2	51.0	131.6	168.9	380.9	71.3	416.7	262.7
BattleZone	2360.0	37187.5	5184.4	10124.6	14870.0	12954.0	16651.0	7072.7	7065.1	26920.1
Boxing	0.1	12.1	9.1	0.2	1.2	6.0	35.8	13.4	21.3	36.3
Breakout	1.7	30.5	16.4	1.9	4.9	16.1	17.1	17.9	10.9	19.1
ChopperCommand	811.0	7387.8	1246.9	861.8	1058.5	780.3	974.8	800.8	317.0	2517.0
Crazy Climber	10780.5	23829.4	62583.6	16185.2	12146.5	20516.5	42923.6	49373.9	44128.0	67328.1
Demon Attack	107805	35829.4	62583.6	16185.3	12146.5	20516.5	42923.6	8994.9	5071.8	7989.0
Freeway	0.0	29.6	20.3	27.9	26.7	9.8	24.4	-12.1	29.9	27.1
Frostbite	65.2	4334.7	254.7	866.8	1181.3	331.1	1821.5	230.9	1796.1	496.5
Gopher	257.6	2412.5	771.0	349.5	669.3	636.3	715.2	498.6	2590.4	2386.5
Hero	1027.0	30826.4	2656.6	6857.0	6279.3	3736.3	7019.2	663.5	6789.1	12189.3
Jamesbond	29.0	302.8	125.3	301.6	471.0	236.0	365.4	484.4	356.1	622.3
Kangaroo	52.0	3035.0	323.1	779.3	872.5	940.6	3276.4	1761.9	412.0	5280.1
Krull	1598.0	2665.5	4539.9	2851.5	4229.6	4018.1	2688.9	3142.5	2312.0	4496.0
Kung Fu Master	258.5	22736.3	17257.2	14346.1	14307.8	9111.0	13192.7	16754.9	17357.0	22412.0
Ms Pacman	307.3	6951.6	1480.0	1204.1	1465.5	960.5	1313.2	558.5	2827.1	2092.3
Pong	-20.7	14.6	12.8	-19.3	-16.5	-8.5	-5.9	-26.2	-8.0	12.5
Private Eye	24.9	69571.3	58.3	97.8	218.4	-13.6	124.0	98.3	96.1	117.9
Qbert	163.9	13455.0	1288.8	1152.9	1042.4	854.4	669.1	666.3	17671.2	19271.4
Road Runner	11.5	7845.0	5640.6	9600.0	5661.0	8895.1	14220.5	6146.7	4782.1	5919.0
Seaquest	68.4	42054.7	683.3	354.1	384.5	301.2	583.1	706.6	2116.7	4209.7
Up N Down	533.4	11693.2	3350.3	2877.4	2955.2	3180.8	28138.5	10037.6	8289.4	4911.9
Mean Human-Norm'd	0.000	1.000	44.3	28.5	38.1	35.7	70.4	64.31	69.55	99.04
Median Human-Norm'd	0.000	1.000	14.4	16.1	17.5	26.8	41.5	12.36	47.50	58.80
# Superhuman	0	N/A	2	2	2	2	7	6	7	8
*								1		

Result

• Unsupervised pretraining outperforms training from scratch using fewer number of interactions

Analysis

- Particle-based entropy maximization is important for exploration
- Successor features and conditioning on latent variables helps quick adaptation

Summary

- Particle-based entropy maximization is effective in exploration
- Conditioning policy on latent variables helps adaptation
- Our method is simple yet effective in combining the best of both world

$$I(s;z) = \mathcal{H}(s) - \mathcal{H}(s|z)$$

Future Work

- Incorporate the prompt design to harvest the few-shot ability of our method
- Better representation learning for particle-based exploration
- Supervised training alternatives for unsupervised pretraining?