

Size-Invariant Graph Representations for Graph Classification Extrapolations

Beatrice Bevilacqua*, Yangze Zhou*, Bruno Ribeiro

Purdue University

ICML 2021

*Equal contribution

This work focuses on out-of-distribution (OOD) extrapolations in Graph Representation Learning

Toolbox:

- Causality
- Graph limits
- Graph Neural Networks

Graph Classification Tasks

Graph Representation Learning generally assumes: Train distribution = Test distribution

What if test data were out of distribution (OOD)?

Extrapolation to Different Graph Sizes

What if train has **small** graphs but test has **large** graphs?

What if train has **large** graphs but test has **small** graphs?

Train (large graphs)Test (small graphs) (G_1^{tr}, Y_1^{tr}) (G_2^{tr}, Y_2^{tr}) (G_1^{tr}, Y_1^{tr}) (G_2^{tr}, Y_2^{tr})

Size Extrapolation with GNNs?

Do Graph Neural Networks (GNNs) extrapolate?

- \Rightarrow GNNs can be applied to graphs of any size
- ⇒ But may not extrapolate between **small (train)** and **large (test)** graphs:

Accuracy in Schizophrenia task

How do we extrapolate beyond the training distribution?

- If OOD examples available, **data-driven methods** work:
- **Domain Adaptation**
- **Covariate Shift Adaptation**
- Few-shot Learning
- Data Augmentation
- Invariant Risk-Minimization (IRM)*

...

Data-driven methods:

Pros	Cons
 Can use existing GNN methods Don't assume a mechanism for distribution shift 	 Must have OOD examples during training

What if no access to OOD data?

Must define a causal mechanism

Next: Observational vs Causal (Counterfactual) modeling

Why are Causal Mechanisms Needed for Extrapolations without OOD Data?

Graph Representation Learning is Observational

Historical analogy to Graph Representation Learning methods:

- Ptolemaic geocentric model of planetary motion
 - Very accurate to predict positions observationally
 - **Cannot** predict positions in new **scenarios**

New scenario: What would happen if Mars became 10x more massive?

Extrapolations to New Scenarios

 Observational predictions can be purely data-driven

 Predicting new scenarios (larger and smaller mass) without OOD examples requires a mechanism

New scenario: What would happen if Mars became 10x more massive?

Size Extrapolations on Graphs

Train (small graphs) Test (large graphs)

What would be the label of a graph if it were larger?

Counterfactual Task (since we have no access to test data):

Shuffle

& Split

 $(G_2^{tr}, \mathbf{Y}_2^{tr})$

 $(G_1^{te}, \mathbf{Y}_1^{te})$

 (G_1, Y_1)

Train

...

...

 (G_3, Y_3)

Test

 (G_2, Y_2)

Planetary Motion Equivalent

IRDUE

Differences between Observational and Counterfactual Tasks

Observational Task:

Data

 (G_2, Y_2)

 $(G_1^{tr}, \mathbf{Y}_1^{tr})$

(G₁,

 (G_3, Y_3)

Predicting unseen examples of training distribution

Reminder of talk:

What would be the labels if the graphs were larger?

Q: What would be the label if the graph were infinitely large?

 $N \to \infty$

Lovász Graph Limits

- What graph property is invariant as graphs become larger?
 - Lovász & Szegedy (2006) shows:
 - Density of induced subgraphs of a dense random graph converges as $N \rightarrow \infty$

Count = 1

Induced k-sized subgraph density $t_{ind}(F_k, \mathcal{G}_{N^*}^*) = \frac{ind(F_k, \mathcal{G}_{N^*}^*)}{N^*! / (N^* - k)!}$ $t_{ind}(\mathcal{O}, \mathcal{G}_{N^*}^*) = \frac{2}{14! / (14 - 4)!}$

$$t_{ind}(\Im, \mathcal{G}_{N^*}) = \frac{1}{14! / (14 - 4)!}$$

What if we constructed a graph representation from subgraph densities?

Graph Representation based on Densities

OOD Error in Schizophrenia Task

• Can subgraph density representation Γ_{GNN} extrapolate OOD?

Accuracy in Schizophrenia task

Theory

Understand why Γ_{GNN} can OOD extrapolate

Preliminary: 1-hot encoded graph representations are most-expressive

First: replace the GNN-representation of $F_{k'}$ with a 1-hot encoded representation

Theorem 1 (informal): Approximately size-invariant representations Under certain conditions (explained later), the change in graph representation between train and counterfactual test graph is upper bounded by k and graph sizes (in train and test): $P(||\Gamma_{1-hot}(\mathcal{G}_{N^{tr}}^{tr}) - \Gamma_{1-hot}(\mathcal{G}_{N^{te}}^{te})||_{\infty} > \epsilon) \leq 2|\mathcal{F}_{\leq k}|(\exp(-\frac{\epsilon^2 N^{tr}}{8k^2}) + \exp(-\frac{\epsilon^2 N^{te}}{8k^2}))$

Training graph Counterfactual test graph

 Proof relies on Lovász graph limits (formal definition in paper) Note that Γ_{GNN} is less expressive (more invariant) than Γ_{1-hot}

Why are we interested in invariant representations?

Proposition 1 (informal): Effect of invariant representations Consider:

- Γ : A permutation invariant graph representation
- ρ : A downstream classifier

In-distribution generalization error : $\forall y \in Y$, for some $\epsilon, \delta \ge 0$

$$\mathbb{P}(|\mathbb{P}(Y = y \mid \mathcal{G}_{N^{tr}}^{tr}) - \rho(y, \Gamma(\mathcal{G}_{N^{tr}}^{tr}))| \le \epsilon) \ge 1 - \delta$$

If Γ is OOD-invariant then test error is the same

$$\mathbb{P}(|\mathbb{P}(Y = y \mid \mathcal{G}_{N^{te}}^{te}) - \rho(y, \Gamma(\mathcal{G}_{N^{te}}^{te}))| \le \epsilon) \ge 1 - \delta$$

A size-invariant representation has same error **in-distribution** and **out-of-distribution**

Erdős–Rényi Task Example

IRM (Arjovskj et al., 2019) aims to learn an invariant representation. However:

- Solution of the second state of the second
- Solution of the second state of the second
- \bigcirc not invariant if OOD support \neq training support

IRM (Arjovskj et al., 2019) aims to learn an invariant representation. However:

- Solution of the second state of the second
- Solution of the second state of the second
- Not invariant if OOD support ≠ training support Accuracy in Erdős-Rényi task

Causal Mechanism Assumed by Theorem 1 & Proposition 1

Causal Mechanism Assumed by Theorem 1 & Proposition 1

- Structural Causal Model:
 - Graph label Y is a function of the graph model W + some random noise
 - Graph size $N^{tr}(N^{te})$ is a function of "environment" $E^{tr}(E^{te})$ only
 - Train (test) graphs are generated by W and $E^{tr}(E^{te})$ with same random noises

Improving OOD extrapolation of vertex attributes

Symmetry Regularization

 $+\lambda$...

• What if OOD shift in attribute distribution?

• Attribute symmetry regularization for representation Γ_{GNN} : Loss + $\lambda \parallel \text{READOUT}_{\Gamma}(\text{GNN}(\begin{smallmatrix}{l} 8\end{smallmatrix})) - \text{READOUT}_{\Gamma}(\text{GNN}(\begin{smallmatrix}{l} 8\end{smallmatrix})) \parallel$ + $\lambda \parallel \text{READOUT}_{\Gamma}(\text{GNN}(\begin{smallmatrix}{l} 8\end{smallmatrix})) - \text{READOUT}_{\Gamma}(\text{GNN}(\begin{smallmatrix}{l} 8\end{smallmatrix})) \parallel$

Pushes subgraph representations towards topologyonly unless hurts training loss

OOD Error in Synthetic Task with OOD Attributes

Accuracy in SBM task

Symmetry regularization helps Γ_{GNN} extrapolate to OOD attributes

OOD Extrapolation Depends on Causal Mechanism Driving Distribution Shift

I.e.: no OOD universal representations!

NCI1 task does not follow our causal mechanism

Conclusions

Exciting new area in Graph Representation Learning:

- OOD extrapolation without examples
 - Connects counterfactual predictions to stable graph properties
 - E.g., we use subgraph densities as a stable property
- There is no universal OOD graph representation

bbevilac@purdue.edu zhou950@purdue.edu

References

- Lovász, L. and Szegedy, B. Limits of dense graph sequences. Journal of Combinatorial Theory, Series B, 96(6):933–957, 2006.
- Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. Invariant risk minimization. arXiv preprint arXiv:1907.02893, 2019.
- Mouli, S. C. and Ribeiro, B. Neural networks for learning counterfactual ginvariances from single environments. ICLR, 2021.