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Introduction

Generative models have been trained successfully to generate

photorealistic images from different classes.
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Motivation and Contributions

The central question that we want to address in this work is how to

optimally use pre-trained generative models to solve inverse problems.

Contributions:

• We propose a novel optimization method, Intermediate Layer

Optimization (ILO), for solving general inverse problems.

• We theoretically analyze our framework by establishing sample

complexity and error bounds.

• We show experimentally significant improvements over previous

state-of-the-art methods for solving inverse problems with

pre-trained generators.
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Problem Setup and Prior Work

Goal: Recover an unknown image x by observing some noisy

measurements A(x) + η. Prior work:

• CSGM [1]. Assume access to a pre-trained generator

G (z) : Rk → Rn. Use Gradient Descent to solve the following

problem:

z∗ = min
z∈Rk
||A(G (z))−A(x)||. (1)

• PULSE [2]. Improves upon CSGM by refining the latent space

optimization and using the StyleGAN [3, 4] pretrained model.

Excellent results for super-resolution.
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Limitations

Previous methods have certain limitations.

• Generations are constrained to a low-dimensional manifold of the

output space.

• Pre-trained generators reflect or amplify dataset biases.

• Existing algorithms fail to achieve reconstruction of images that are

outside of the training distribution.

• Previous state-of-the-art methods address each inverse problem

separately, instead of providing a unified framework to solve all of

them.
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ILO (Algorithm)

We propose Intermediate Layer Optimization (ILO), a novel optimization

algorithm that expands the range of the generator to solve general

inverse problems. Our algorithm has the following key ideas:

• We split the generator G into multiple parts, i.e.

G = Gl ◦ Gl−1 ◦ ... ◦ G2 ◦ G1.

• We optimize over the input space of G1, we find a z∗, and we use

G1(z∗) as an initialization for a new optimization problem in the

input space of G2.

• We follow this idea to optimize over the input space of deeper

layers, effectively expanding the range of the generator.

• To avoid overfitting to the measurements, we constrain the solutions

of the optimization problem to an l1 ball around the range of the

previous layer.
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Experiments (Visual Results)
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Experiments (Qualitative Results)
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Experiments (Out of distribution generation)
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ILO (Theory)

Theorem
Let G = G2 ◦ G1 with G1 : Rk → Rp be an L1-Lipschitz function and G2 : Rp → Rn be

an L2-Lipschitz function. Let A ∈ Rm×n be the measurements matrix with

Aij ∼ N (0, 1/m) i.i.d. entries.

Let K be a parameter of our choice where K ≤ √p, and r2 = Kδ
L2

. Consider the true

optimum in the extended range

z̄p = argminzp∈G1(Bk
2 (r1))⊕B

p
1 (r2)||x − G2(zp)||, (2)

and the measurements optimum in the extended range

z̃p = argminzp∈G1(Bk
2 (r1))⊕B

p
1 (r2)||Ax − AG2(zp)||. (3)

Then, if the number of measurements is sufficiently large:

m =
1

(1− γ)2
Ω

(
k log

L1L2r1

δ
+ K2 log p

)
, (4)

then with probability at least 1− e−Ω((1−γ)2·m), we have the following error bound:

||x − G2(z̃p)|| ≤
(

1 +
4

γ

)
||x − G2(z̄p)||

+δ ·
log(4K)

γ
·
√
p

K
log

√
p

K
. (5)
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