Deep Coherent Exploration for Continuous Control

Yijie Zhang¹ & Herke van Hoof²

¹University of Copenhagen ²University of Amsterdam

University of Amsterdam

Undirected Exploration for (Deep) RL

Action space exploration Step-based

(Sutton, 1995; Williams, 1992)

- Straightforward and easy to understand
- High-frequency perturbations can be unstable

Generalized exploration (GE)
Intermediate
(van Hoof et al., 2017)

- Better balance between stability and stochasticity
- Unscalable for complex models and long trajectories

Parameter space exploration Trajectory-based

(Ruckstieß et al., 2010; Sehnke et al., 2010; Fortunato et al., 2018; Plappert et al., 2018)

- Consistent, structure, and global exploration behaviors
- Inefficient evaluation and insufficient stochasticity

Can we make GE more scalable for deep RL?

Deep Coherent Exploration

Characteristics of deep coherent exploration

- Generalizing step-based and trajectory-based exploration (following GE)
 - Balanced trade-off between stability and stochasticity
- Recursive exact integration of latent exploring policies
 - Scalable policy updates compared to GE
 - Lower-variance gradient estimates compared to reparameterization trick
- 3. Perturbing only last layers of policy networks
 - Controllable noise injection

Experiments: Comparative Evaluation

Experiments: Comparative Evaluation

Ablation Study #1: Generalizing Step-Based and Trajectory-Based Exploration

A more balanced trade-off between stability and stochasticity brings more efficient exploration and learning.

Ablation Study #2: Recursive Analytical Integration of Latent Exploring Policies

Recursive analytical integration leads to more scalable and stable policy updates.

Ablation Study #3: Perturbing Only Last Layers of Policy Networks

Controllable noise injection is beneficial for faster learning.

Conclusion

- General and easy to implement for both on- and off-policy deep RL algorithms
- Generalizing step-based and trajectory-based exploration allows more delicate trade-off between stability and stochasticity
- Recursive analytical integration enables more scalable, stable updates and faster learning
- Perturbing only the last layers of policy networks brings controllable noise injection

Thank you!