Targeted Data Acquisition for Evolving Negotiation Agents

Minae Kwon, Siddharth Karamcheti, Mariano-Florentino Cuéllar, Dorsa Sadigh

Lawyers in court

Lawyers in court

Employee negotiating salary

Lawyers in court

Employee negotiating salary

2021 UN climate change conference

Desiderata

Desiderata

(1) Agents that maximize their self-interest

Desiderata

- (1) Agents that maximize their self-interest
- (2) Agents that can compromise (find Pareto-optimal solutions)

$$L(\theta) = -\sum_{x,c} \sum_{t} \log p_{\theta}(x_t | x_{0:t-1}, c)$$

$$-\alpha \sum_{x,c} \sum_{j} \log p_{\theta}(o_j | x_{0:t-1}, c)$$

$$L(\theta) = -\sum_{x,c} \sum_{t} \log p_{\theta}(x_{t}|x_{0:t-1},c)$$
utterances
context

$$-\alpha \sum_{x,c} \sum_{j} \log p_{\theta}(o_j | x_{0:t-1}, c)$$

$$L(\theta) = -\sum_{x,c} \sum_{t} \log p_{\theta}(x_{t}|x_{0:t-1},c)$$
utterances
context

utterance prediction loss

$$-\alpha \sum_{x,c} \sum_{j} \log p_{\theta}(o_j | x_{0:t-1}, c)$$

$$-\alpha \sum_{x,c} \sum_{j} \log p_{\theta}(o_{j}|x_{0:t-1},c)$$

final split prediction loss

Relationship to dataset: bias inherited from dataset

Reinforce

RL

propose(0

Bob (fixed)

Negotiation

insist(1 bun,

```
Alice: insist: item0=0 item1=3 item2=1
Bob : propose: item0=1 item1=2 item2=0
Alice: propose: item0=1 item1=3 item2=1
Bob : propose: item0=1 item1=2 item2=0
Alice: propose: item0=1 item1=3 item2=1
Bob : propose: item0=1 item1=2 item2=0
Alice: propose: item0=1 item1=3 item2=1
Bob : propose: item0=1 item1=2 item2=0
Alice: propose: item0=1 item1=3 item2=1
Bob : propose: item0=1 item1=2 item2=0
Alice: propose: item0=1 item1=3 item2=1
Bob : propose: item0=1 item1=2 item2=0
Alice: propose: item0=1 item1=3 item2=1
Bob : propose: item0=1 item1=2 item2=0
Alice: propose: item0=1 item1=3 item2=1
Bob : propose: item0=1 item1=2 item2=0
Alice: propose: item0=1 item1=3 item2=1
Bob : propose: item0=1 item1=2 item2=0
```

Alice: <selection>
Alice: book=1 hat=3 ball=1
Bob: book=1 hat=2 ball=0

Disagreement?!

Alice: 0 (potential 10) Bob: 0 (potential 7)

Reinforce

propose(0

insist(1 bun,

Negotiation

Bob

(fixed)

$\int R$

Alice: insist: item0=0 item1=3 item2=1

Bob : propose: item0=1 item1=2 item2=0

Alice: propose: item0=1 item1=3 item2=1

Bob : propose: item0=1 item1=2 item2=0

Alice: propose: item0=1 item1=3 item2=1

Bob : propose: item0=1 item1=2 item2=0

Alice: propose: item0=1 item1=3 item2=1

Bob : propose: item0=1 item1=2 item2=0

Alice: propose: item0=1 item1=3 item2=1

Bob : propose: item0=1 item1=2 item2=0

Alice: propose: item0=1 item1=3 item2=1

Bob : propose: item0=1 item1=2 item2=0

Alice: propose: item0=1 item1=3 item2=1

Bob : propose: item0=1 item1=2 item2=0

Alice: propose: item0=1 item1=3 item2=1

Bob : propose: item0=1 item1=2 item2=0

Alice: propose: item0=1 item1=3 item2=1

Bob : propose: item0=1 item1=2 item2=0

Alice: <selection>

Alice: book=1 hat=3 ball=1

Bob : book=1 hat=2 ball=0

Disagreement?!

Alice: 0 (potential 10)

Bob : 0 (potential 7)

Relationship to dataset: Alice inherits dataset biases through Bob

Relationship to dataset: Alice inherits dataset biases through Bob

Mixed RL, SL (RL+SL)

Interleave SL training every nth timestep

- n=1: RL, SL, RL, SL ...
- n=2: RL, RL, SL, RL, RL, SL ...

Mixed RL, SL (RL+SL)

Interleave SL training every nth timestep

- n=1: RL, SL, RL, SL ...
- n=2: RL, RL, SL, RL, RL, SL ...

Relationship to dataset: same as SL, bias inherited from dataset

Problem: Low-quality, static datasets!

Problem: Low-quality, static datasets!

Key Insight: Continually improve Bob with expert data!

Novelty score:

$$s_n = \min_{x_t \in X^A} \log p_{\theta}(x_t | x_{0:t-1}, c^A)$$

Novelty score:

$$s_n = \min_{x_t \in X^A} \log p_{\theta}(x_t | x_{0:t-1}, c^A)$$

Alice RL Training

Alice RL Training

Pick k=500 most novel negotiations

Alice RL Training

Pick k=500 most novel negotiations

Alice RL Training

Pick k=500 most novel negotiations

Alice RL Training

Pick k=500 most novel negotiations

Evaluation

Can we balance self-interest and Pareto-optimality?

Results with a Human Partner

Results with a Human Partner

Main Ideas

• Our approach balances self-interest and Pareto-optimality the best.

• This holds true against both simulated and human partners.