Private Adaptive Gradient Methods for Convex Optimization

Alireza Fallah*
MIT

Joint work with:

Hilal Asi*
Stanford

John Duchi Stanford

Omid Javidbakht
Apple

Kunal Talwar Apple

^{*} Work done while interning at Apple.

Stochastic Gradient Methods

Goal: solving
$$\min_{x \in \mathcal{X}} f(x) := \frac{1}{n} \sum_{i=1}^{n} F(x, z_i)$$
 privately ($\mathcal{X} \subset \mathbb{R}^d$ is a convex set).

• F is a convex (possibly non-smooth) function $\{z_1, \dots, z_n\}$ are n datapoint.

Private Stochastic Gradient Methods

• A randomized algorithm \mathcal{M} is (ε, δ) differentially private (DP) if for all neighboring datasets $\mathcal{S}, \mathcal{S}'$ we have: $\mathbb{P}(\mathcal{M}(\mathcal{S}) \in \mathcal{O}) \leq e^{\varepsilon} \mathbb{P}(\mathcal{M}(\mathcal{S}') \in \mathcal{O}) + \delta$ (for any open interval \mathcal{O}).

Private Adaptive Gradient Methods

- In this work, we propose two novel private adaptive gradient methods.
- Our algorithms are adaptive in two aspects:
 - 1. The projection (and hence the added noise) adapts to the underlying geometry of gradients.
 - 2. We use adaptive optimization methods to further exploit the underlying geometry of the problem.
- We explain these two aspects separately.

Projection in Original DP-SGD

Original DP-SGD projects gradients to a d dimensional ball.

Projection in Our DP Algorithms

- In many applications gradients lie in certain geometries, e.g., they are sparse.
- We could take advantage of this geometry in both projection and adding DP noise.

PASAN & PAGAN

Private Adaptive SGD/AdaGrad with Adaptive Noise

- We further leverage gradient geometry by choosing adaptive learning rates.
- Our proposed methods (PASAN & PAGAN) use the aforementioned projection.
- PASAN: Private SGD with adaptive scalar learning rates: $\alpha_k = \alpha (\sum_{i=1}^{\kappa} \|\hat{g}^i\|^2)^{-1/2}$
- PAGAN: Private AdaGrad, i.e., using adaptive diagonal matrices as learning rates:

$$\alpha_k = \alpha \left(\operatorname{diag}(\sum_{i=0}^k \hat{g}^i \hat{g}^{i^{\mathsf{T}}}) \right)^{-1/2}$$

Convergence of PASAN and PAGAN

- We provide upper and lower bounds for the convergence of PASAN and PAGAN.
- Main assumption to capture the underlying geometry of gradients:
 - ullet The l_p norm of Lipschitz constant with respect to a matrix norm is bounded, i.e.:

$$\mathbb{E}_{z}[\|\nabla F(x,z)\|_{C}^{p}] \leq G^{p}$$

• Our results show that, in certain cases where gradients are sparse across coordinates, PAGAN improves dimension dependence up to a factor of $\sqrt{d/\log(d)}$!

Experiments

- We train an LSTM model over WikiText-2 dataset (details in paper.)
- We report minimum validation perplexity vs. training rounds (7 epochs).

 $\varepsilon = 0.5$

= 1

 $\varepsilon = 3$

Minimum validation perplexity

Experiments (Cont.)

Test Perpelexity	$\varepsilon = 0.5$	$\varepsilon = 1$	$\varepsilon = 3$
DP-SGD	349.1	287.81	240.32
PASAN	332.52	274.63	238.87
PAGAN	291.41	253.41	224.82

Additional experiments in convex setting in paper.

Stop by and check our poster for further and more detailed results!

Thanks!