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Stochastic Gradient Methods

1 n
Goal: solving min f(x) := — Z F(x, z;) privately (Z C I 4is a convex set).
* xed n 1

» Fisaconvex (possibly non-smooth) function &{z;, -*+, z,,} are n datapoint.
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Private Stochastic Gradient Methods

» A randomized algorithm Z is (&, o) differentially private (DP) if for all neighboring

datasets &', &’ we have: |
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Private Adaptive Gradient Methods

* |n this work, we propose two novel gradient methods.

* QOur algorithms are adaptive in two aspects:

1. The projection (and hence the added noise) adapts to the underlying geometry
of gradients.

2. We use adaptive optimization methods to further exploit the underlying geometry
of the problem.

 We explain these two aspects separately.



Projection in Original DP-SGD

» Original DP-SGD projects gradients to a d dimensional ball.

Projection
— \
/Ad'dlng
DP noise




Projection in Our DP Algorithms

* |n many applications gradients lie in certain geometries, e.qg., they are sparse.

 We could take advantage of this geometry in both projection and adding DP noise.
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PASAN &
Private Adaptive SGD/ with Adaptive Noise

 We further leverage gradient geometry by choosing

e Our proposed methods (PASAN & PAGAN) use the aforementioned projection.

k
PASAN: Private SGD with adaptive scalar learning rates: a;, = a( Z 184]|1%)~1
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Convergence of PASAN and PAGAN

* We provide upper and lower bounds for the convergence of PASAN and PAGAN.

 Main assumption to capture the underlying geometry of gradients:

e The lp norm of Lipschitz constant with respect to a matrix norm is bounded, I.e.:

e Our results show that, in certain cases where gradients are sparse across
coordinates, PAGAN improves dimension dependence up to a factor of



Experiments

 We train an LSTM model over WikiText-2 dataset (details in paper.)

* We report minimum validation perplexity vs. training rounds (7 epochs).
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Experiments (Cont.)

e Additional experiments in convex setting in paper.



Stop by and check our poster for further and more
detalled results!
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