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Stochastic Gradient Methods

• Goal: solving   privately (  is a convex set). 


•  is a convex (possibly non-smooth) function &  are  datapoint.
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xk+1 = xk − αgk



Private Stochastic Gradient Methods

• A randomized algorithm  is  differentially private (DP) if for all neighboring 
datasets  we have:  (for any open 
interval ).

ℳ (ε, δ)
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Private Adaptive Gradient Methods

• In this work, we propose two novel private adaptive gradient methods.


• Our algorithms are adaptive in two aspects:


1. The projection (and hence the added noise) adapts to the underlying geometry 
of gradients.


2. We use adaptive optimization methods to further exploit the underlying geometry 
of the problem.


• We explain these two aspects separately.



Projection in Original DP-SGD

• Original DP-SGD projects gradients to a  dimensional ball.d
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Projection in Our DP Algorithms

• In many applications gradients lie in certain geometries, e.g., they are sparse. 


• We could take advantage of this geometry in both projection and adding DP noise. 

+

Adding  
DP noise

Projection
g

Ellipsoid 
x⊤Ax ≤ 1

DP noise 

𝒩(0,
log(1/δ)

ϵ2
A−1)

̂g

Private  
Gradient



PASAN & PAGAN
Private Adaptive SGD/AdaGrad with Adaptive Noise

• We further leverage gradient geometry by choosing adaptive learning rates.


• Our proposed methods (PASAN & PAGAN) use the aforementioned projection.


•  PASAN: Private SGD with adaptive scalar learning rates: 


• PAGAN: Private AdaGrad, i.e., using adaptive diagonal matrices as learning rates:
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Convergence of PASAN and PAGAN

• We provide upper and lower bounds for the convergence of PASAN and PAGAN.


• Main assumption to capture the underlying geometry of gradients: 


• The  norm of Lipschitz constant with respect to a matrix norm is bounded, i.e.:





• Our results show that, in certain cases where gradients are sparse across 
coordinates, PAGAN improves dimension dependence up to a factor of !

lp
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Experiments
• We train an LSTM model over WikiText-2 dataset (details in paper.)


• We report minimum validation perplexity vs. training rounds (7 epochs).

Minimum validation perplexity
ε = 0.5

ε = 1 ε = 3



Experiments (Cont.)

Test 
Perpelexity

DP-SGD 349.1 287.81 240.32

PASAN 332.52 274.63 238.87

PAGAN 291.41 253.41 224.82

ε = 0.5 ε = 1 ε = 3

• Additional experiments in convex setting in paper.



Stop by and check our poster for further and more 
detailed results! 

Thanks!


