RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting

Soumyasundar Pal¹, Liheng Ma¹, Yingxue Zhang², Mark Coates¹

- 1. Dept. of Electrical and Computer Engineering, McGill University
 - 2. Huawei Noah's Ark Lab, Montreal Research Center

July 17, 2021

- Exploit underlying graph structure for time series forecasting

- Exploit underlying graph structure for time series forecasting
- Applications: road traffic, wireless networks

- Exploit underlying graph structure for time series forecasting
- Applications: road traffic, wireless networks

 $reproduced\ from \\ https://www.tomtom.com/blog/traffic-and-travel-information/road-traffic-prediction/com/blog/traffic-and-travel-information/road-traffic-prediction/com/blog/traffic-and-travel-information/road-traffic-prediction/com/blog/traffic-and-travel-information/road-traffic-prediction/com/blog/traffic-and-travel-information/road-traffic-prediction/com/blog/traffic-and-travel-information/road-traffic-prediction/com/blog/traffic-and-travel-information/road-traffic-prediction/com/blog/traffic-and-travel-information/road-traffic-prediction/com/blog/traffic-and-travel-information/road-traffic-prediction/com/blog/traffic-and-travel-information/road-traffic-prediction/com/blog/traffic-and-travel-information/com/bl$

- Exploit underlying graph structure for time series forecasting
- Applications: road traffic, wireless networks

- State-of-the-art
 - Graph convolution + recurrent networks¹
 - Temporal convolution²
 - Attention mechanism³

¹ Li et al. 2018, Bai et al. 2020

² Yu et al. 2018, Huang et al. 2020

 $^{^3}$ Guo et al. 2019, Zheng et al. 2020

- State-of-the-art
 - Graph convolution + recurrent networks¹
 - Temporal convolution²
 - Attention mechanism³
- Provide point forecast, no measure of uncertainty

¹ Li et al. 2018. Bai et al. 2020

² Yu et al. 2018, Huang et al. 2020

³ Guo et al. 2019, Zheng et al. 2020

- State-of-the-art
 - Graph convolution + recurrent networks¹
 - Temporal convolution²
 - Attention mechanism³
- Provide point forecast, no measure of uncertainty
- Existing probabilistic models⁴ cannot process a graph.

¹ Li et al. 2018, Bai et al. 2020

 $^{^2\,}$ Yu et al. 2018, Huang et al. 2020

 $^{^3}$ Guo et al. 2019, Zheng et al. 2020

⁴ Salinas et al. 2020, Wang et al. 2019, Rasul et al. 2021

- State-of-the-art
 - Graph convolution + recurrent networks¹
 - Temporal convolution²
 - Attention mechanism³
- Provide point forecast, no measure of uncertainty
- Existing probabilistic models⁴ cannot process a graph.
- This work: Bayesian framework to assess forecast uncertainty

¹ Li et al. 2018, Bai et al. 2020

 $^{^2}$ Yu et al. 2018, Huang et al. 2020

³ Guo et al. 2019, Zheng et al. 2020

⁴ Salinas et al. 2020, Wang et al. 2019, Rasul et al. 2021

State-space model

```
Initial state distribution: x_1 \sim p_1(\cdot, z_1, \rho),
```

State transition model:
$$\mathbf{x}_t = \mathbf{g}_{\mathcal{G},\psi}(\mathbf{x}_{t-1},\mathbf{y}_{t-1},\mathbf{z}_t,\mathbf{v}_t), \text{ for } t>1$$
,

Emission model:
$$y_t = h_{\mathcal{G},\phi}(x_t, z_t, w_t)$$
, for $t \geqslant 1$.

State-space model

```
Initial state distribution: x_1 \sim p_1(\cdot, z_1, \rho),
```

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

Emission model: $y_t = h_{\mathcal{G},\phi}(x_t, z_t, w_t)$, for $t \ge 1$.

- y_t : time series, x_t : hidden state, z_t : known covariate(s)

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

- y_t : time series, x_t : hidden state, z_t : known covariate(s)
- $v_t \sim p_v(\cdot|x_{t-1},\sigma)$: dynamic noise

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

- y_t : time series, x_t : hidden state, z_t : known covariate(s)
- $v_t \sim p_v(\cdot|x_{t-1},\sigma)$: dynamic noise
- $w_t \sim p_w(\cdot|x_t,\gamma)$: measurement noise

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1},y_{t-1},z_t,v_t)$, for t > 1,

- y_t : time series, x_t : hidden state, z_t : known covariate(s)
- $v_t \sim p_v(\cdot|x_{t-1},\sigma)$: dynamic noise
- $w_t \sim p_w(\cdot|x_t,\gamma)$: measurement noise
- $-g_{\mathcal{G},\psi}$: GNN+RNN (e.g. AGCGRU⁵, DCGRU⁶)

 $^{^{5}}$ Bai et al. 2020, 6 Li et al. 2018

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

- y_t : time series, x_t : hidden state, z_t : known covariate(s)
- $\mathsf{v}_t \sim p_{\mathsf{v}}(\cdot|\mathsf{x}_{t-1},\sigma)$: dynamic noise
- $w_t \sim p_w(\cdot|x_t,\gamma)$: measurement noise
- $-g_{\mathcal{G},\psi}$: GNN+RNN (e.g. AGCGRU⁵, DCGRU⁶)
- $-h_{\mathcal{G},\phi}$: NN (e.g. linear layer)

⁵ Bai et al. 2020, ⁶ Li et al. 2018

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

- y_t : time series, x_t : hidden state, z_t : known covariate(s)
- $v_t \sim p_v(\cdot|x_{t-1},\sigma)$: dynamic noise
- $w_t \sim p_w(\cdot|x_t,\gamma)$: measurement noise
- $-g_{\mathcal{G},\psi}$: GNN+RNN (e.g. AGCGRU⁵, DCGRU⁶)
- $-h_{\mathcal{G},\phi}$: NN (e.g. linear layer)
- Unknown model parameters: $\Theta = \{\rho, \psi, \sigma, \phi, \gamma\}$

⁵ Bai et al. 2020, ⁶ Li et al. 2018

Graphical model representation

Task

Predict $y_{t_0+P+1:t_0+P+Q}$ based on $y_{t_0+1:t_0+P}$, $z_{t_0+1:t_0+P+Q}$, and (possibly) $\mathcal G$

Graphical model representation

Task

Predict $y_{t_0+P+1:t_0+P+Q}$ based on $y_{t_0+1:t_0+P}$, $z_{t_0+1:t_0+P+Q}$, and (possibly) $\mathcal G$

- Train the model to learn Θ

Graphical model representation

Task

Predict $y_{t_0+P+1:t_0+P+Q}$ based on $y_{t_0+1:t_0+P}$, $z_{t_0+1:t_0+P+Q}$, and (possibly) $\mathcal G$

- Train the model to learn Θ
- Approximate $p_{\Theta}(y_{P+1:P+Q}|y_{1:P},z_{1:P+Q})$ for test data

$$\begin{split} p_{\Theta}(\mathbf{y}_{P+1:P+Q}|\mathbf{y}_{1:P},\mathbf{z}_{1:P+Q}) &= \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(\mathbf{y}_t|\mathbf{x}_t,\mathbf{z}_t) \right. \\ &\left. p_{\psi,\sigma}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{y}_{t-1},\mathbf{z}_t) \right) \\ &\left. p_{\Theta}(\mathbf{x}_P|\mathbf{y}_{1:P},\mathbf{z}_{1:P}) d\mathbf{x}_{P:P+Q} \right. \end{split}$$

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \right)$$

$$p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t)$$

$$p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

Intractable, Monte Carlo approximation

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \right)$$

$$p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t)$$

$$p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

- Intractable, Monte Carlo approximation
- $-p_{\Theta}(x_{P}|y_{1:P},z_{1:P})$: posterior distribution of the state

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \right)$$

$$p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t)$$

$$p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

- Intractable, Monte Carlo approximation
- $-p_{\Theta}(x_P|y_{1:P},z_{1:P})$: posterior distribution of the state
- Need particle filter/particle flow for approximation

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \right)$$

$$p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t)$$

$$p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

- Intractable, Monte Carlo approximation
- $-p_{\Theta}(x_P|y_{1:P},z_{1:P})$: posterior distribution of the state
- Need particle filter/particle flow for approximation
- $p_{\psi,\sigma}(x_t|x_{t-1},y_{t-1},z_t)$: state transition using $g_{\mathcal{G},\psi}$

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \right)$$

$$p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t)$$

$$p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

- Intractable, Monte Carlo approximation
- $-p_{\Theta}(x_P|y_{1:P},z_{1:P})$: posterior distribution of the state
- Need particle filter/particle flow for approximation
- $p_{\psi,\sigma}(x_t|x_{t-1},y_{t-1},z_t)$: state transition using $g_{\mathcal{G},\psi}$
- $-p_{\phi,\gamma}(y_t|x_t,z_t)$: sampling forecast using $h_{\mathcal{G},\phi}$

Particle filter suffers from weight degeneracy for high dimensional state/ informative observations.

Particle filter suffers from weight degeneracy for high dimensional state/ informative observations.

Contours of the prior distribution

Particle filter suffers from weight degeneracy for high dimensional state/ informative observations.

Contours of the posterior distribution

Particle filter suffers from weight degeneracy for high dimensional state/ informative observations.

Resampling of the particles

Particle flow

Particles flow migrates particles from the prior to the posterior distribution.

⁷F. Daum and J. Huang, "Nonlinear filters with log-homotopy," in *Proc. SPIE Signal and Data Proc. Small Targets*, Sep. 2007.

Particle flow

Particles flow migrates particles from the prior to the posterior distribution.

⁷F. Daum and J. Huang, "Nonlinear filters with log-homotopy," in *Proc. SPIE Signal and Data Proc. Small Targets*, Sep. 2007.

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P},z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t,z_t) - p_{\psi,\sigma}(x_t|x_{t-1},y_{t-1},z_t)\right)$$

$$p_{\Theta}(x_P|y_{1:P},z_{1:P}) dx_{P:P+Q}.$$

$$p_{\Theta}(\mathbf{y}_{P+1:P+Q}|\mathbf{y}_{1:P},\mathbf{z}_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \binom{p_{\phi,\gamma}(\mathbf{y}_t|\mathbf{x}_t,\mathbf{z}_t)}{p_{\psi,\sigma}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{y}_{t-1},\mathbf{z}_t)}$$

$$p_{\Theta}(\mathbf{x}_P|\mathbf{y}_{1:P},\mathbf{z}_{1:P})d\mathbf{x}_{P:P+Q}.$$
State transition model
$$g_{\mathcal{G},\psi}(\mathbf{x}_{t-1},\mathbf{y}_{t-1},\mathbf{z}_t,\mathbf{v}_t)$$
Emission model
$$h_{\mathcal{G},\phi}(\mathbf{x}_t,\mathbf{z}_t,\mathbf{w}_t)$$

$$p_{\text{posterior}}$$
* particles prove the particles provided in the properties of the particles provided in the provided in

 $\lambda = 0.005$

- (a) Samples (asterisk) from the prior distribution
- (b) Contours of the posterior distribution and the direction of flow for the particles at an intermediate step
- (c) Particles after the flow, approximately distributed according to the posterior distribution

(c)

$$2 \leqslant t \leqslant P$$

Computing forecast distribution

Computing forecast distribution

Computing forecast distribution

Approximation of the joint posterior distribution of the forecasts

Loss function

- For point forecasting: MAE, MSE
- For probabilistic forecasting: negative log posterior probability

Loss function

- For point forecasting: MAE, MSE
- For probabilistic forecasting: negative log posterior probability

$$\mathcal{L}_{\text{prob}}(\Theta, \mathcal{D}) = -\frac{1}{|\mathcal{D}|} \sum_{n \in \mathcal{D}} \log p_{\Theta}(\mathbf{y}_{P+1:P+Q}^{(n)}|\mathbf{y}_{1:P}^{(n)}, \mathbf{z}_{1:P+Q}^{(n)}),$$

$$\widehat{p}_{\Theta}(y_{P+1:P+Q}|y_{1:P},z_{P+1:P+Q}) = \prod_{t=P+1}^{P+Q} \left[\frac{1}{N_{\rho}} \sum_{j=1}^{N_{\rho}} p_{\phi,\gamma}(y_t|x_t^j,z_t) \right].$$

• Road traffic datasets: PeMSD3/4/7/8⁸

⁸ Chen et al. 2000

- Road traffic datasets: PeMSD3/4/7/8⁸
- Node: loop detector, time series: speed, interval: 5 minutes

⁸ Chen et al. 2000

- Road traffic datasets: PeMSD3/4/7/8⁸
- Node: loop detector, time series: speed, interval: 5 minutes
- predicting one hour from an hour of historical data (P=Q=12)

⁸ Chen et al. 2000

- Road traffic datasets: PeMSD3/4/7/8⁸
- Node: loop detector, time series: speed, interval: 5 minutes
- predicting one hour from an hour of historical data (P=Q=12)
- 70/10/20% data for training/validation/testing

⁸ Chen et al. 2000

- Road traffic datasets: PeMSD3/4/7/8⁸
- Node: loop detector, time series: speed, interval: 5 minutes
- predicting one hour from an hour of historical data (P=Q=12)
- 70/10/20% data for training/validation/testing
- Performance metrics for point forecasting:
 - MAE, RMSE, and MAPE

⁸ Chen et al. 2000

- Road traffic datasets: PeMSD3/4/7/8⁸
- Node: loop detector, time series: speed, interval: 5 minutes
- predicting one hour from an hour of historical data (P=Q=12)
- 70/10/20% data for training/validation/testing
- Performance metrics for point forecasting:
 - MAE, RMSE, and MAPE
- Performance metrics for probabilistic forecasting:
 - Continuous Ranked Probability Score (CRPS)⁹
 - P10, P50, and P90 Quantile Losses¹⁰

⁸ Chen et al. 2000

⁹ Gneiting & Raftery 2007

¹⁰ Wang et al. 2019

Baselines

- Statistical and ML point forecast models:
 - HA, ARIMA¹¹, VAR¹², SVR¹³, FNN, FC-LSTM¹⁴

 $^{^{11}}$ Makridakis & Hibon 1997, 12 Hamilton 1994, 13 Chun-Hsin et al. 2004, 14 Sutskever et al. 2014

Baselines

- Statistical and ML point forecast models:
 - HA, ARIMA¹¹, VAR¹², SVR¹³, FNN, FC-LSTM¹⁴
- Spatio-temporal point forecast models:
 - DCRNN¹⁵, STGCN¹⁶, ASTGCN¹⁷, GWN¹⁸, GMAN¹⁹, AGCRN²⁰, LSGCN²¹

²⁰ Bai et al. 2020, ²¹ Huang et al. 2021

¹¹ Makridakis & Hibon 1997, ¹² Hamilton 1994, ¹³ Chun-Hsin et al. 2004, ¹⁴ Sutskever et al. 2014

 $[\]frac{15}{20}$ Li et al. 2018, $\frac{16}{1}$ Yu et al. 2018, $\frac{17}{1}$ Guo et al. 2019, $\frac{18}{1}$ Wu et al. 2019, $\frac{19}{1}$ Zheng et al. 2020,

Baselines¹

- Statistical and ML point forecast models:
 - HA, ARIMA¹¹, VAR¹², SVR¹³, FNN, FC-LSTM¹⁴
- Spatio-temporal point forecast models:
 - DCRNN¹⁵, STGCN¹⁶, ASTGCN¹⁷, GWN¹⁸, GMAN¹⁹, AGCRN²⁰, LSGCN²¹
- Graph agnostic point forecast models:
 - DeepGLO²², N-BEATS²³, FC-GAGA²⁴

¹¹ Makridakis & Hibon 1997, ¹² Hamilton 1994, ¹³ Chun-Hsin et al. 2004, ¹⁴ Sutskever et al. 2014

 $^{^{15}}_{22}$ Li et al. 2018, $^{16}_{21}$ Yu et al. 2018, 17 Guo et al. 2019, 18 Wu et al. 2019, 19 Zheng et al. 2020,

²⁰ Bai et al. 2020, ²¹ Huang et al. 2021

 $^{^{22}}$ Sen et al. 2019, 23 Oreshkin et al. 2020, 24 Oreshkin et al. 2021

Baselines¹

- Statistical and ML point forecast models:
 - HA, ARIMA¹¹, VAR¹², SVR¹³, FNN, FC-LSTM¹⁴
- Spatio-temporal point forecast models:
 - DCRNN¹⁵, STGCN¹⁶, ASTGCN¹⁷, GWN¹⁸, GMAN¹⁹, AGCRN²⁰, LSGCN²¹
- Graph agnostic point forecast models:
 - DeepGLO²², N-BEATS²³, FC-GAGA²⁴
- Graph agnostic probabilistic forecast models:
 - DeepAR²⁵, DeepFactors²⁶, MQRNN²⁷

```
<sup>11</sup> Makridakis & Hibon 1997, <sup>12</sup> Hamilton 1994, <sup>13</sup> Chun-Hsin et al. 2004, <sup>14</sup> Sutskever et al. 2014
```

 $^{^{15}}$ Li et al. 2018, 16 Yu et al. 2018, 17 Guo et al. 2019, 18 Wu et al. 2019, 19 Zheng et al. 2020,

²⁰ Bai et al. 2020, ²¹ Huang et al. 2021

²² Sen et al. 2019, ²³ Oreshkin et al. 2020, ²⁴ Oreshkin et al. 2021

²⁵ Salinas et al. 2020, ²⁶ Wang et al. 2019, ²⁷ Wen et al. 2017

Experimental results: point forecasting

AGCGRU+flow achieves the best average rank.

Experimental results: node by node comparison

AGCGRU+flow outperforms AGCRN at majority of nodes in PeMSD7

Experimental results: probabilistic forecasting

$$CRPS(F,x) = \int_{-\infty}^{\infty} \left(F(z) - 1\{x \leqslant z\} \right)^{2} dz$$

Experimental results: probabilistic forecasting

$$\mathsf{CRPS}(F,x) = \int_{-\infty}^{\infty} \left(F(z) - 1\{x \leqslant z\} \right)^2 dz$$

Our approaches obtain lower average CRPS.

Experimental results: quantile estimation

$$\mathsf{QL}\big(x,\hat{x}(\alpha)\big) = 2\Big(\alpha\big(x-\hat{x}(\alpha)\big)1\{x>\hat{x}(\alpha)\} + (1-\alpha)\big(\hat{x}(\alpha)-x\big)1\{x\leqslant \hat{x}(\alpha)\}\Big)$$

Experimental results: quantile estimation

$$\mathsf{QL}\big(x,\hat{x}(\alpha)\big) = 2\Big(\alpha\big(x-\hat{x}(\alpha)\big)1\{x>\hat{x}(\alpha)\} + (1-\alpha)\big(\hat{x}(\alpha)-x\big)1\{x\leqslant \hat{x}(\alpha)\}\Big)$$

AGCGRU+flow has the lowest quantile error on average.

Experimental results: confidence intervals

Confidence intervals for 15 minutes ahead predictions at node 4 of PeMSD7 for the first day in the test set.

- General Bayesian framework to represent forecast uncertainty

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools
- Univariate/multivariate forecasting with/without graphs

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools
- Univariate/multivariate forecasting with/without graphs
- Comparable point forecasting to state-of-the-art

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools
- Univariate/multivariate forecasting with/without graphs
- Comparable point forecasting to state-of-the-art
- Better characterization of prediction uncertainty

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools
- Univariate/multivariate forecasting with/without graphs
- Comparable point forecasting to state-of-the-art
- Better characterization of prediction uncertainty
- Results for non-graph data, component analyses in the paper

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools
- Univariate/multivariate forecasting with/without graphs
- Comparable point forecasting to state-of-the-art
- Better characterization of prediction uncertainty
- Results for non-graph data, component analyses in the paper
- Code: https://github.com/networkslab/rnn_flow