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Zero-shot CLIP is much more robust



Why contrastive?



Training
- Trained on 400M image-text pairs from the internet
- Batch size of 32,768
- 32 epochs over the dataset
- Cosine learning rate decay

Architecture
- ResNet-based or ViT-based image encoder
- Transformer-based text encoder

Some CLIP details



Representation Learning



Linear probe

Logistic regression classifier on image features

- L-BFGS
- Only one hyperparameter
- Allows “fair” comparisons with other vision models
- Provides lower bound for fine-tuned models

Evaluated on 27 image datasets × 65 vision models 

satellite images, car models, medical images, city classification, rendered texts, aircrafts, birds, memes, ... 



Linear probe performance vs SOTA vision models



vs ImageNet score



Zero-Shot Transfer



Zero-shot vs Linear-probe ResNet-50

Zero-shot CLIP matches fully supervised ResNet-50 across eval suite



Zero-shot CLIP vs Few-shot linear probes

Zero-shot CLIP is as good as

- 4-shot linear-probe CLIP
- 16-shot BiT-M



Zero-shot vs Linear-probe CLIP



Zero-shot performance vs model size



Prompt engineering



Robustness to Natural Distribution Shift



Robustness to natural distribution shift

Zero-Shot CLIP is much more robust!

7 ImageNet-like Datasets (Taori et al.)

- ImageNetV2
- ImageNet-A
- ImageNet-R
- ImageNet Sketch
- ObjectNet
- ImageNet Vid
- Youtube-BB



Adapting to ImageNet does not help robustness



Robustness of few-shot linear probes



Limitations and Broader Impacts



- Zero-shot performance is well below the SOTA

- Especially weak on abstract tasks such as counting

- Poor on out-of-distribution data such as MNIST

- Susceptible to adversarial attacks

- Dataset selection in the eval suite, use of large validation sets for 
prompt engineering

- Social biases

Limitations of CLIP



- Class design can heavily influence bias

Quantifying the (un)safety of CLIP models

Category Label 
Set

0-2 3-9 10-19 20-29 30-39 40-49 50-59 60-69

Default Label 
Set

30.3 35.0 29.5 16.3 13.9 18.5 19.1 16.2

Default Label 
Set + ‘child’

2.3 4.3 14.7 15.0 13.4 18.2 18.6 15.5

Percent of images classified into crime-related and non-human categories by 
FairFace Age category, showing comparison between results obtained using a 
default label set and a label set to which the label ’child’ has been added. 



- Enables niche tasks which lack training data

 CelebA Zero-Shot Top 1 Identity Recognition Results

Not comprehensive, continuing to research to ensure safety

Quantifying the (un)safety of CLIP models

Model 100 Classes 1k Classes 2k Classes

CLIP L/14 59.2 43.3 42.2

CLIP RN50x62 56.4 39.5 38.4

CLIP RN50x62 52.7 37.4 36.3

CLIP RN50x62 52.8 38.1 37.3



Related Work



Prior Related Work

Natural language supervision:
- YFCC100M WSL (Joulin et al.)
- VirTex (Desai and Johnson)
- ICMLM (Sariyildiz et al.)
- ConVIRT (Zhang et al.)

Zero-Shot Transfer:
- Visual N-Grams (Li et al.)

Broad Evaluation and Robustness:
- VTAB (Zhang et al.)
- ImageNet Testbed (Taori et al.)



Multimodal Neurons in CLIP (Goh et al. Distill)



Typographic Attacks



StyleCLIP
(Patashnik et al.)

Steering a GAN Using CLIP

Applications of CLIP

CLIP4Clip
(Luo & Ji, et al.)

Video retrieval using 
CLIP features



“Dogs playing poker”

More text-based image generations using CLIP

“Geoffrey Hinton”“A banquet hall”

© Gene Kogan, Ryan Murdock



https://github.com/openai/CLIP

- PyTorch implementation
- Colab notebook
- Zero-Shot prediction reference
- Linear probe reference
- YFCC100M dataset
- Released models

Try CLIP today!

https://github.com/openai/CLIP
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