

Learning Transferable Visual Models From Natural Language Supervision

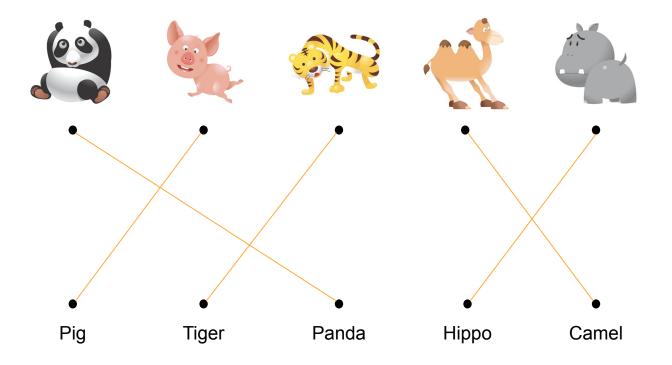
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever OpenAl

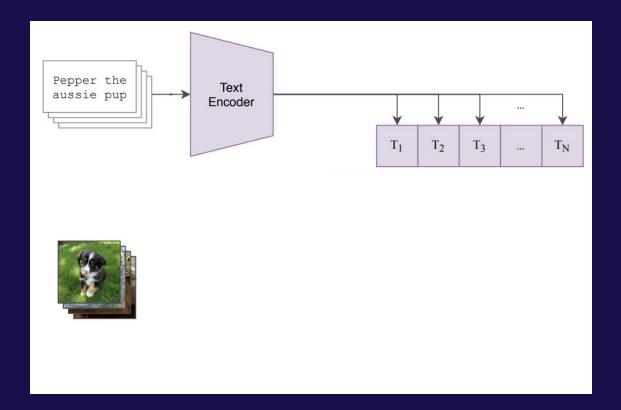
Contrastive learning

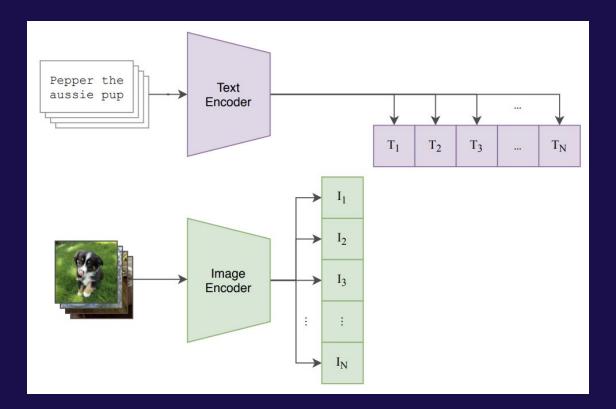
Contrastive learning

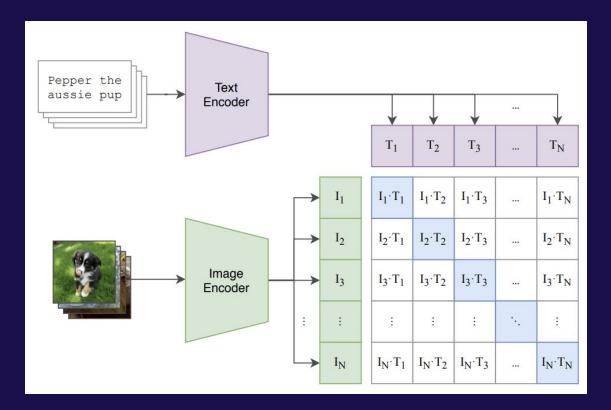
•	•	•	•	•
Pig	Tiger	Panda	Hippo	Camel

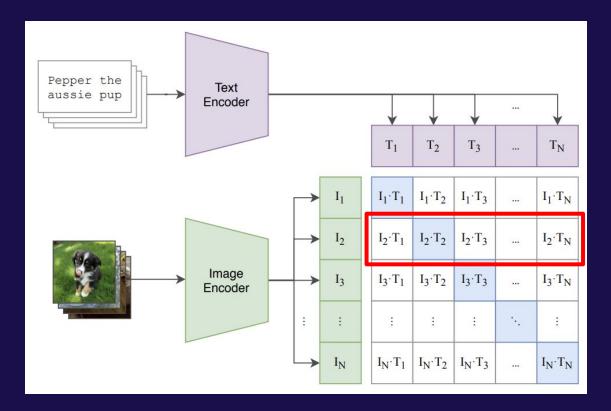
Contrastive learning

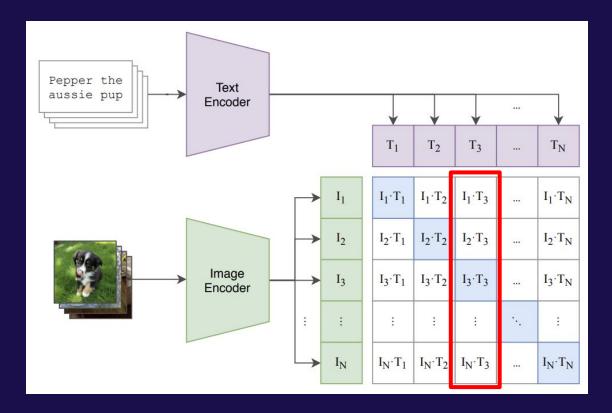


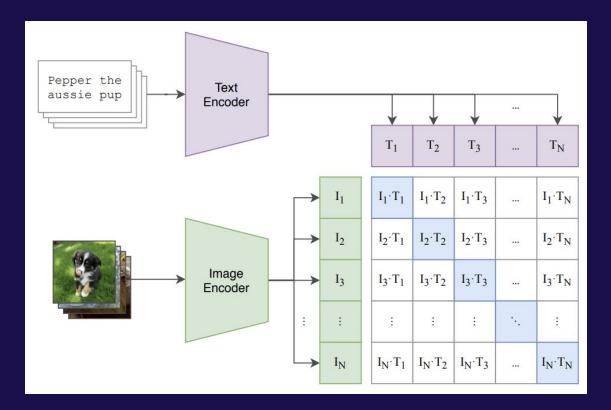


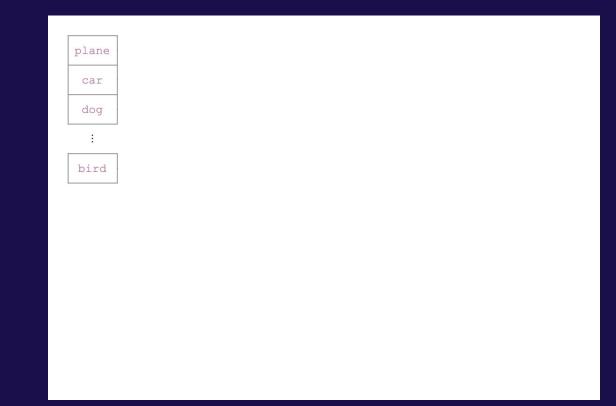


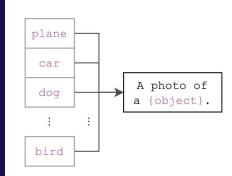


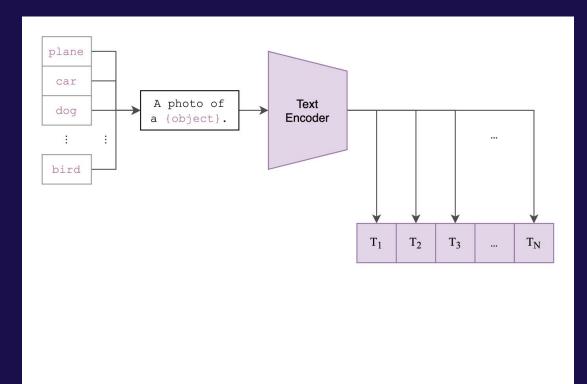


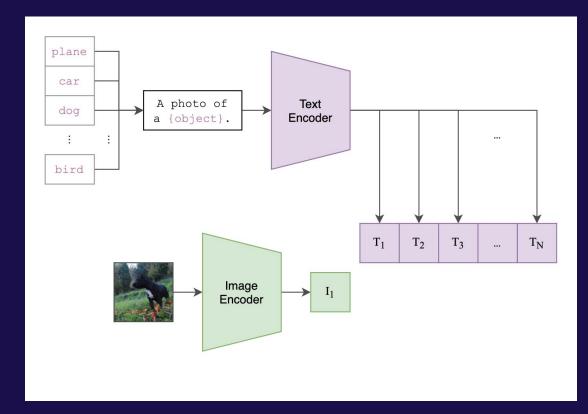


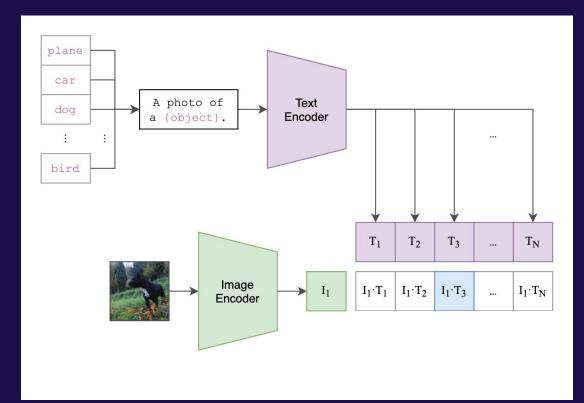


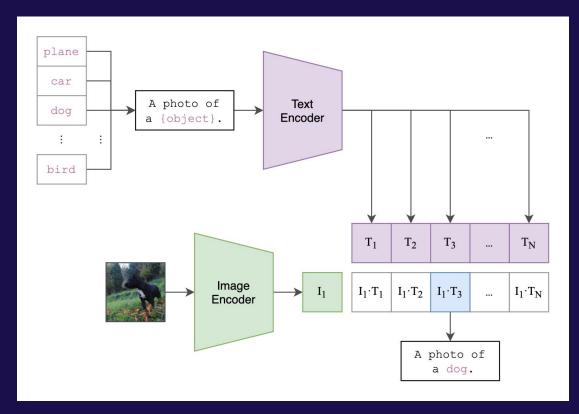






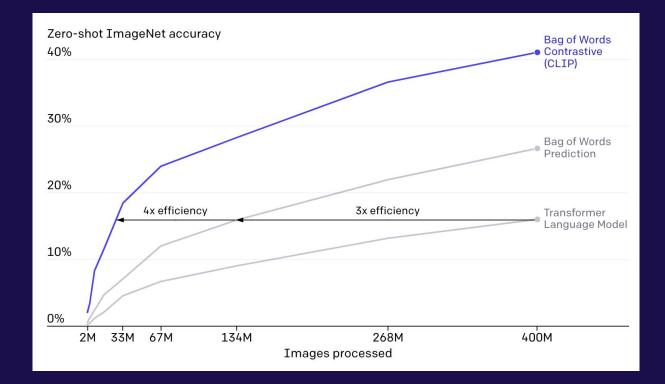






Zero-shot CLIP is much more robust

Why contrastive?



Some CLIP details

Training

- Trained on 400M image-text pairs from the internet
- Batch size of 32,768
- 32 epochs over the dataset
- Cosine learning rate decay

Architecture

- ResNet-based or ViT-based image encoder
- Transformer-based text encoder

Representation Learning

Linear probe

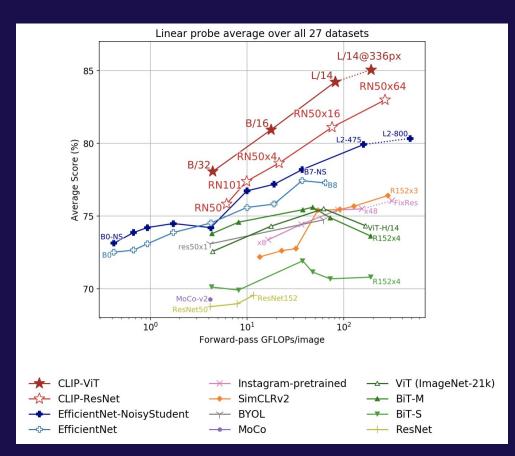
Logistic regression classifier on image features

- L-BFGS
- Only one hyperparameter
- Allows "fair" comparisons with other vision models
- Provides lower bound for fine-tuned models

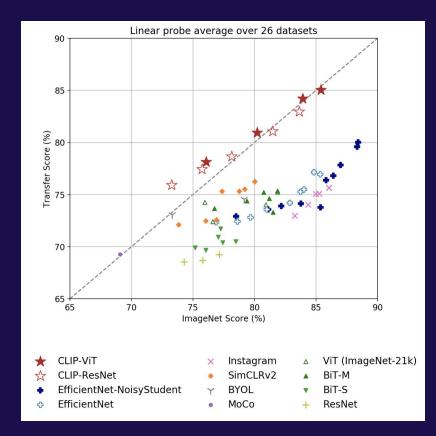
Evaluated on 27 image datasets × 65 vision models

satellite images, car models, medical images, city classification, rendered texts, aircrafts, birds, memes, ...

Linear probe performance vs SOTA vision models



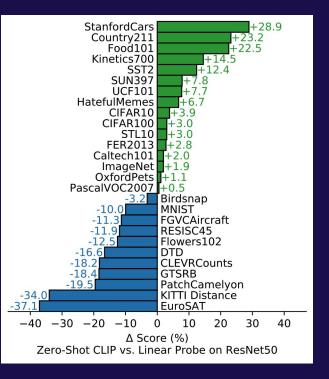
vs ImageNet score



Zero-Shot Transfer

Zero-shot vs Linear-probe ResNet-50

Zero-shot CLIP matches fully supervised ResNet-50 across eval suite



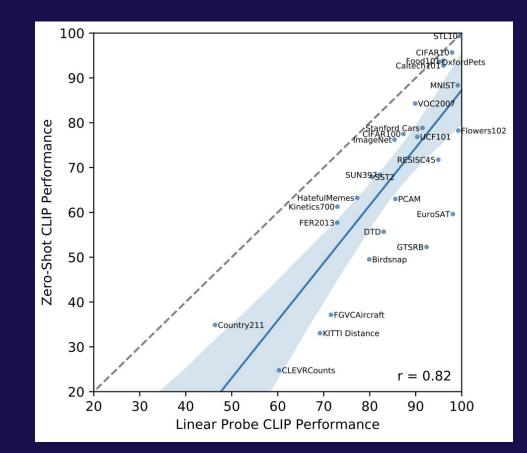
Zero-shot CLIP vs Few-shot linear probes

Zero-shot CLIP is as good as

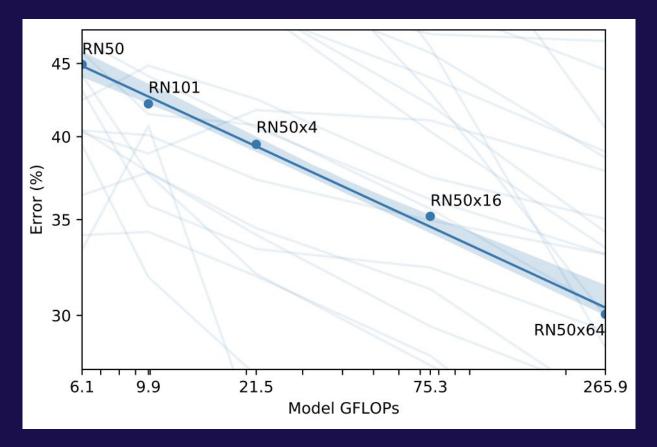
- 4-shot linear-probe CLIP
- 16-shot BiT-M



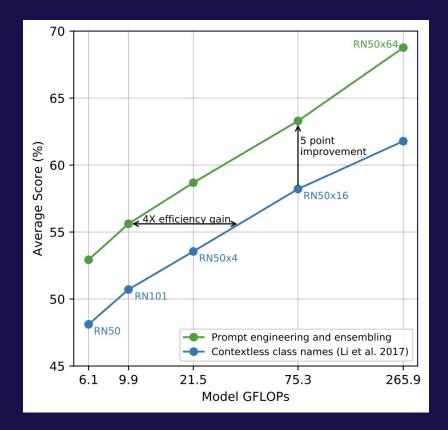
Zero-shot vs Linear-probe CLIP



Zero-shot performance vs model size



Prompt engineering



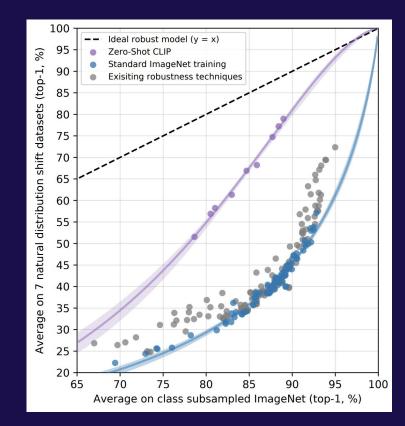
Robustness to Natural Distribution Shift

Robustness to natural distribution shift

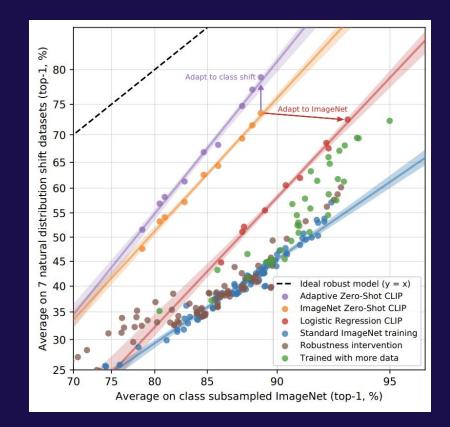
Zero-Shot CLIP is much more robust!

7 ImageNet-like Datasets (Taori et al.)

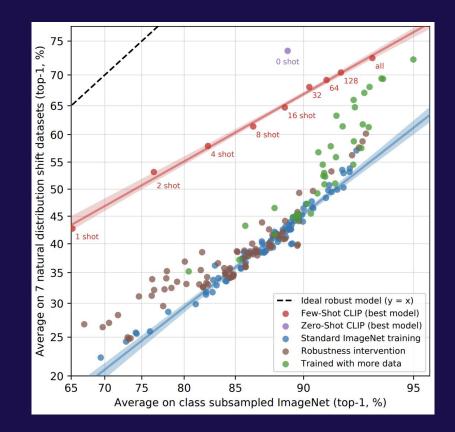
- ImageNetV2
- ImageNet-A
- ImageNet-R
- ImageNet Sketch
- ObjectNet
- ImageNet Vid
- Youtube-BB



Adapting to ImageNet does not help robustness



Robustness of few-shot linear probes



Limitations and Broader Impacts

Limitations of CLIP

- Zero-shot performance is well below the SOTA
- Especially weak on abstract tasks such as counting
- Poor on out-of-distribution data such as MNIST
- Susceptible to adversarial attacks
- Dataset selection in the eval suite, use of large validation sets for prompt engineering
- Social biases

Quantifying the (un)safety of CLIP models

- Class design can heavily influence bias

Category Label Set	0-2	3-9	10-19	20-29	30-39	40-49	50-59	60-69
Default Label Set	30.3	35.0	29.5	16.3	13.9	18.5	19.1	16.2
Default Label Set + 'child'	2.3	4.3	14.7	15.0	13.4	18.2	18.6	15.5

Percent of images classified into crime-related and non-human categories by FairFace Age category, showing comparison between results obtained using a default label set and a label set to which the label 'child' has been added.

Quantifying the (un)safety of CLIP models

- Enables niche tasks which lack training data

Model	100 Classes	1k Classes	2k Classes
CLIP L/14	59.2	43.3	42.2
CLIP RN50x62	56.4	39.5	38.4
CLIP RN50x62	52.7	37.4	36.3
CLIP RN50x62	52.8	38.1	37.3

CelebA Zero-Shot Top 1 Identity Recognition Results

Not comprehensive, continuing to research to ensure safety

Related Work

Prior Related Work

Natural language supervision:

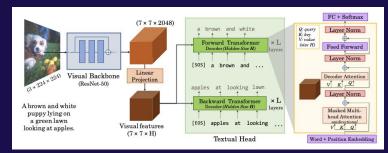
- YFCC100M WSL (Joulin et al.)
- VirTex (Desai and Johnson)
- ICMLM (Sariyildiz et al.)
- ConVIRT (Zhang et al.)

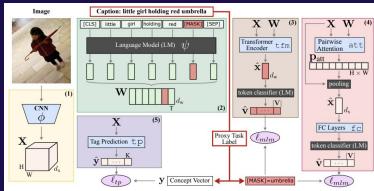
Zero-Shot Transfer:

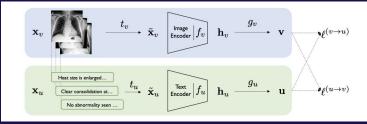
- Visual N-Grams (Li et al.)

Broad Evaluation and Robustness:

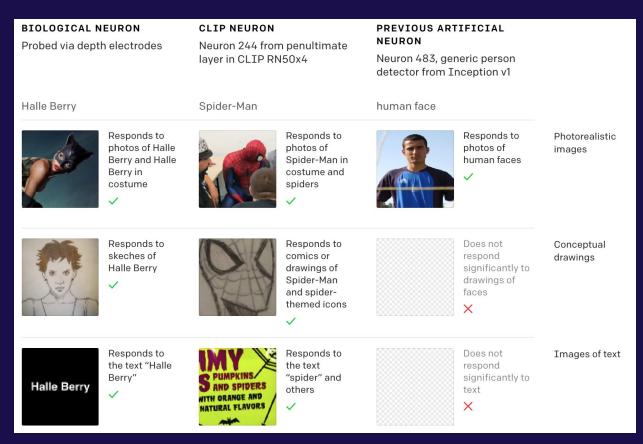
- VTAB (Zhang et al.)
- ImageNet Testbed (Taori et al.)







Multimodal Neurons in CLIP (Goh et al. Distill)

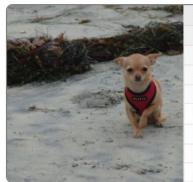


Typographic Attacks

NO LABEL

Granny Smith	85.61%		Granny Smith	0.13%
iPod	0.42%		iPod	99.68%
library	0%		library	0%
pizza	0%	n.	pizza	0%
rifle	0%	iPad	rifle	0%
toaster	0%	100	toaster	0%
dough	0.1%	6 month	dough	0%
assault rifle	0%		assault rifle	0%
patio	0.56%	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	patio	0%

LABELED "IPOD"



Chihuahua	17.5%
Miniature Pinscher	14.3%
French Bulldog	7.3%
Griffon Bruxellois	5.7%
Italian Greyhound	4%
West Highland White Terrier	2.1%
Schipperke	2%
Maltese	2%
Australian Terrier	1.9%

pizza	83.7%
pretzel	2%
Chihuahua	1.5%
broccoli	1.2%
hot dog	0.6%
Boston Terrier	0.6%
French Bulldog	0.5%
spatula	0.4%
Italian Greyhound	0.3%

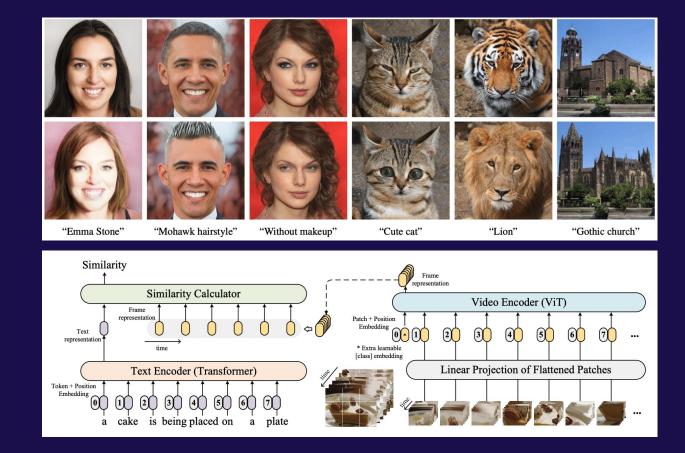
Applications of CLIP

StyleCLIP (Patashnik et al.)

Steering a GAN Using CLIP

CLIP4Clip (Luo & Ji, et al.)

Video retrieval using CLIP features



More text-based image generations using CLIP

"A banquet hall"

"Geoffrey Hinton"

"Dogs playing poker"

© Gene Kogan, Ryan Murdock

Try CLIP today!

https://github.com/openai/CLIP

- PyTorch implementation
- Colab notebook
- Zero-Shot prediction reference
- Linear probe reference
- YFCC100M dataset
- Released models

Search or jump to		Explore	다 + ~ @	
<> Code (!) Issues 6	👫 Pull requests 🕟 Actions 🕕 Security 🗠	Insights 🔅 S	ettings	
양 main ▾ 양1branch ♡	0 tags Go to file Add file -	⊻ Code -	About	
jongwook added RN50 che	ckpoint and non-JIT model impl 6bc0bd8 2 days ago	🕑 4 commits	Contrastive Language-Imag Pretraining	
CLIP.png	initial commit	9 days ago	🛱 Readme	
Interacting_with_CLIP.ipy	correctly tokenizing SOT/EOT tokens (fixes #8)	6 days ago	শ্রু MIT License	
	initial commit	9 days ago		
README.md	added RN50 checkpoint and non-JIT model implem	2 days ago	Languages	
bpe_simple_vocab_16e6.t	initial commit	9 days ago	 Jupyter Notebook 99.2% Python 0.8% 	
🗋 clip.py	added RN50 checkpoint and non-JIT model implem	2 days ago		
🗋 model-card.md	added RN50 checkpoint and non-JIT model implem	2 days ago		
🗅 model.py	added RN50 checkpoint and non-JIT model implem	2 days ago		
simple_tokenizer.py	initial commit	9 days ago		

CLIP

[Blog] [Paper] [Model Card] [Colab]

CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similarly to the zeroshot capabilities of GPT-2 and 3. We found CLIP matches the performance of the original ResNet50 on ImageNet "zero-shot" without using any of the original 1.28M labeled examples, overcoming several major challenges in computer vision.

Thank You

Visit openai.com for more information.

FOLLOW @OPENAI ON TWITTER WE ARE HIRING!