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Motivation

How can humans specify high-level objectives to an RL agent?

via Reward Function?
Infeasible for humans to program for every possible task.

via Natural Language?
Unclear what reward to optimize.
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This Work

e Formal language of Linear Temporal Logic (LTL) [Pnueli, 1977]
o  Expressive temporally extended goals
o  Automatic mapping Instruction =» Reward
o Procedural sampling from > 10* unique LTL instructions

e Theoretical benefits
O  non-myopic composition
o non-Markovian rewards

e Empirical benefits
o Discrete & Continuous (MuJoCo) environments
o Zero-shot generalization to unseen and larger instructions
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Tasks in LTL

Task Type LTL Formula English
Single Goal eventually pickup coal “Get coal”
Ordered Goals eventually (pickup coal and “Get coal, then use the furnace”

(eventually use furnace))

Unordered Goals (eventually pickup coal) and | “Getcoal and get wood, in any order”
(eventually pickup wood)

Disjunctive Goals (eventually pickup coal) or “Get coal or get wood”
(eventually pickup wood)

Safety (eventually pickup wood) and | “Get wood while avoiding lava”
(always (not on lava))
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LTL Instruction = Reward

]_ if instruction is satisfied

R == —_ 1 if instruction is falsified

O otherwise



Task Decomposition



Task Decomposition

LTL Progression [Bacchus & Kabanza, 2000]

e Formally defined for all LTL formulas
e Simplify instructions once parts of the task are solved



LTL Progression — Example
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“Get coal or wood, then use the furnace.”

!

|

ﬁ

eventually ((pickup coal or pickup wood)
and (eventually use furnace))

a
4
[]
g
a

mL
o
d

“Use the furnace.”

eventually use furnace




LTL Progression — Example

“Get coal or wood, then use the furnace.”
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Theorems

v/ Retains optimal convergence guarantees
v’ Markov assumptions hold



Results

Avoidance Tasks
(> 970 million possible tasks)

formula := sequence A formula | sequence

sequence := —prop(prop /\ sequence) | —propprop

Partially-Ordered Tasks
(> 10°*° possible tasks)

formula := sequence A formula | sequence
sequence := {(term A sequence) | {term

term := prop | prop V prop
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Results

Gridworld (Discrete)
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Zero-Shot Generalization

Total Reward

Avoidance Tasks

1.0

0.8 A

0.6 -

0.4

0.2

0.0 A

B Train Tasks
W77 Larger Tasks




Other topics ...



Other topics ...

e A environment-agnostic pre-training scheme to learn LTL semantics



Other topics ...

e A environment-agnostic pre-training scheme to learn LTL semantics
e What neural architecture best encodes LTL instructions?



Other topics ...

e A environment-agnostic pre-training scheme to learn LTL semantics
e What neural architecture best encodes LTL instructions?
e Procedural generation of meaningful LTL instructions



Other topics ...

e A environment-agnostic pre-training scheme to learn LTL semantics
e What neural architecture best encodes LTL instructions?
e Procedural generation of meaningful LTL instructions

Come to our /bOS'fek./

Code is available at:
https://github.com/ILTL2Action/LTL2Action
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