Near-optimal Algorithms for Explainable k-Medians and k-Means Konstantin Makarychev, Liren Shan **Northwestern University** #### Input: - A set of n points, $X = \{x_1, x_2, \dots, x_n\}$ - Number of clusters k #### **Output:** A set of k centers, $C = \{c^1, c^2, \dots, c^k\}$ **Assign** x to $c_x = \arg\min_{c \in C} \operatorname{cost}(x, c)$ k-medians in $$\ell_1$$: $cost(x, c) = ||x - c||_1$ k-medians in ℓ_2 : $cost(x, c) = ||x - c||_2$ k-means : $cost(x, c) = ||x - c||_2^2$ #### Input: - A set of n points, $X = \{x_1, x_2, \dots, x_n\}$ - Number of clusters k #### **Output:** A set of k centers, $C = \{c^1, c^2, \dots, c^k\}$ **Assign** x to $c_x = \arg\min_{c \in C} \operatorname{cost}(x, c)$ k-medians in $$\ell_1$$: $cost(x, c) = ||x - c||_1$ k-medians in ℓ_2 : $cost(x, c) = ||x - c||_2$ k-means : $cost(x, c) = ||x - c||_2^2$ #### Input: - A set of n points, $X = \{x_1, x_2, \dots, x_n\}$ - Number of clusters k #### **Output:** A set of k centers, $C = \{c^1, c^2, \dots, c^k\}$ **Assign** x to $c_x = \arg\min_{c \in C} \operatorname{cost}(x, c)$ k-medians in $$\ell_1$$: $cost(x,c) = ||x - c||_1$ k-medians in ℓ_2 : $cost(x,c) = ||x - c||_2$ k-means : $cost(x,c) = ||x - c||_2^2$ k-means, k=3 #### Input: - A set of n points, $X = \{x_1, x_2, \dots, x_n\}$ - Number of clusters k #### **Output:** A set of k centers, $C = \{c^1, c^2, \dots, c^k\}$ **Assign** x to $c_x = \arg\min_{c \in C} \operatorname{cost}(x, c)$ k-medians in ℓ_1 : $cost(x,c) = ||x - c||_1$ k-medians in ℓ_2 : $cost(x,c) = ||x - c||_2$ k-means : $cost(x,c) = ||x - c||_2^2$ k-means, k=3 [Dasgupta, Frost, Moshkovitz, and Rashtchian, 2020] proposed to use **threshold trees** to describe clusters. [Dasgupta, Frost, Moshkovitz, and Rashtchian, 2020] proposed to use **threshold trees** to describe clusters. [Dasgupta, Frost, Moshkovitz, and Rashtchian, 2020] proposed to use **threshold trees** to describe clusters. Question: Can we find a good explainable clustering? [Dasgupta et al, 2020] defined the price of explainability as $$\frac{\cot(X,T)}{\mathrm{OPT}(X)},$$ where cost(X, T) is the cost of threshold tree T, OPT(X) is the optimal cost of regular k-medians (k-means) clustering. [Dasgupta et al, 2020] defined the price of explainability as $$\frac{\cot(X,T)}{\mathrm{OPT}(X)},$$ where cost(X, T) is the cost of threshold tree T, OPT(X) is the optimal cost of regular k-medians (k-means) clustering. | | k-medians in ℓ_1 | k-means | |-------------|-----------------------|------------------| | Upper Bound | O(k) | $O(k^2)$ | | Lower Bound | $\Omega(\log k)$ | $\Omega(\log k)$ | #### **Our Results** In this work, we provide almost tight bounds for explainable k-medians in ℓ_1 and k-means clustering. We also get upper and lower bounds for explainable k-medians in ℓ_2 | | k-medians in ℓ_1 | | k-medians in ℓ_2 | |-------------|-------------------------|-------------------------|-----------------------| | Upper Bound | $\widetilde{O}(\log k)$ | $\widetilde{O}(k)$ | $O(\log^{3/2} k)$ | | Lower Bound | $\Omega(\log k)^*$ | $\widetilde{\Omega}(k)$ | $\Omega(\log k)$ | ^{*:} provided by [Dasgupta, et al, 2020] Algorithm: **Input:** k centers C **Output:** a threshold tree *T* Iteratively split these centers by **uniformly sampling** a threshold cut Algorithm: **Input:** k centers C **Output:** a threshold tree *T* Iteratively split these centers by **uniformly sampling** a threshold cut Algorithm: **Input:** k centers C **Output:** a threshold tree *T* Iteratively split these centers by **uniformly sampling** a threshold cut Algorithm: **Input:** k centers C **Output:** a threshold tree *T* Iteratively split these centers by **uniformly sampling** a threshold cut Given a set of points X and a set of centers C, we have $\mathbb{E}_T[\cot(X,T)] \leq O(\log k \cdot \log \log k) \cdot \cot(X,C)$. ## **Explainable k-means** • We use the **Terminal Embedding** φ to embed space ℓ_2 into ℓ_1 with distortion O(k), i.e., for every $x \in X$, $c \in C$ $\|\varphi(x) - \varphi(c)\|_1 \le \|x - c\|_2^2 \le 8k \|\varphi(x) - \varphi(c)\|_1$. ■ Then, we use our algorithm for explainable k-medians in ℓ_1 on the instance after embedding. Given a set of points X and a set of centers C, we have $\mathbb{E}_T[\cot(X,T)] \leq O(k \log k \cdot \log \log k) \cdot \cot(X,C)$. # Thank you