Near-optimal Algorithms for Explainable k-Medians and k-Means

Konstantin Makarychev, Liren Shan

Northwestern University

Input:

- A set of n points, $X = \{x_1, x_2, \dots, x_n\}$
- Number of clusters k

Output:

A set of k centers, $C = \{c^1, c^2, \dots, c^k\}$

Assign x to $c_x = \arg\min_{c \in C} \operatorname{cost}(x, c)$

k-medians in
$$\ell_1$$
: $cost(x, c) = ||x - c||_1$
k-medians in ℓ_2 : $cost(x, c) = ||x - c||_2$
k-means : $cost(x, c) = ||x - c||_2^2$

Input:

- A set of n points, $X = \{x_1, x_2, \dots, x_n\}$
- Number of clusters k

Output:

A set of k centers, $C = \{c^1, c^2, \dots, c^k\}$

Assign x to $c_x = \arg\min_{c \in C} \operatorname{cost}(x, c)$

k-medians in
$$\ell_1$$
: $cost(x, c) = ||x - c||_1$
k-medians in ℓ_2 : $cost(x, c) = ||x - c||_2$
k-means : $cost(x, c) = ||x - c||_2^2$

Input:

- A set of n points, $X = \{x_1, x_2, \dots, x_n\}$
- Number of clusters k

Output:

A set of k centers, $C = \{c^1, c^2, \dots, c^k\}$

Assign x to $c_x = \arg\min_{c \in C} \operatorname{cost}(x, c)$

k-medians in
$$\ell_1$$
: $cost(x,c) = ||x - c||_1$
k-medians in ℓ_2 : $cost(x,c) = ||x - c||_2$
k-means : $cost(x,c) = ||x - c||_2^2$

k-means, k=3

Input:

- A set of n points, $X = \{x_1, x_2, \dots, x_n\}$
- Number of clusters k

Output:

A set of k centers, $C = \{c^1, c^2, \dots, c^k\}$

Assign x to $c_x = \arg\min_{c \in C} \operatorname{cost}(x, c)$

k-medians in ℓ_1 : $cost(x,c) = ||x - c||_1$ k-medians in ℓ_2 : $cost(x,c) = ||x - c||_2$ k-means : $cost(x,c) = ||x - c||_2^2$

k-means, k=3

[Dasgupta, Frost, Moshkovitz, and Rashtchian, 2020] proposed to use **threshold trees** to describe clusters.

[Dasgupta, Frost, Moshkovitz, and Rashtchian, 2020] proposed to use **threshold trees** to describe clusters.

[Dasgupta, Frost, Moshkovitz, and Rashtchian, 2020] proposed to use **threshold trees** to describe clusters.

Question: Can we find a good explainable clustering?

[Dasgupta et al, 2020] defined the price of explainability as

$$\frac{\cot(X,T)}{\mathrm{OPT}(X)},$$

where cost(X, T) is the cost of threshold tree T, OPT(X) is the optimal cost of regular k-medians (k-means) clustering.

[Dasgupta et al, 2020] defined the price of explainability as

$$\frac{\cot(X,T)}{\mathrm{OPT}(X)},$$

where cost(X, T) is the cost of threshold tree T, OPT(X) is the optimal cost of regular k-medians (k-means) clustering.

	k-medians in ℓ_1	k-means
Upper Bound	O(k)	$O(k^2)$
Lower Bound	$\Omega(\log k)$	$\Omega(\log k)$

Our Results

In this work, we provide almost tight bounds for explainable k-medians in ℓ_1 and k-means clustering.

We also get upper and lower bounds for explainable k-medians in ℓ_2

	k-medians in ℓ_1		k-medians in ℓ_2
Upper Bound	$\widetilde{O}(\log k)$	$\widetilde{O}(k)$	$O(\log^{3/2} k)$
Lower Bound	$\Omega(\log k)^*$	$\widetilde{\Omega}(k)$	$\Omega(\log k)$

^{*:} provided by [Dasgupta, et al, 2020]

Algorithm:

Input: k centers C

Output: a threshold tree *T*

Iteratively split these centers by **uniformly sampling** a threshold cut

Algorithm:

Input: k centers C

Output: a threshold tree *T*

Iteratively split these centers by **uniformly sampling** a threshold cut

Algorithm:

Input: k centers C

Output: a threshold tree *T*

Iteratively split these centers by **uniformly sampling** a threshold cut

Algorithm:

Input: k centers C

Output: a threshold tree *T*

Iteratively split these centers by **uniformly sampling** a threshold cut

Given a set of points X and a set of centers C, we have $\mathbb{E}_T[\cot(X,T)] \leq O(\log k \cdot \log \log k) \cdot \cot(X,C)$.

Explainable k-means

• We use the **Terminal Embedding** φ to embed space ℓ_2 into ℓ_1 with distortion O(k), i.e., for every $x \in X$, $c \in C$ $\|\varphi(x) - \varphi(c)\|_1 \le \|x - c\|_2^2 \le 8k \|\varphi(x) - \varphi(c)\|_1$.

■ Then, we use our algorithm for explainable k-medians in ℓ_1 on the instance after embedding.

Given a set of points X and a set of centers C, we have $\mathbb{E}_T[\cot(X,T)] \leq O(k \log k \cdot \log \log k) \cdot \cot(X,C)$.

Thank you