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Conventional feed-forward CNNs

• Spatially discrete: use discretized, typically 3 × 3 kernels

• cannot learn the receptive field size during training

• Temporally discrete: use discrete, sequential layers

• cannot model the continuous evolution of neuronal activations
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We present Deep Continuous Networks (DCNs):

• spatially continuous filter descriptions

• can learn the kernel size and receptive field size during training

• depthwise continuous evolution of feature maps

• can model temporal dynamics of neuronal activations in response to images
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• Spatially continuous filters: weighted sum of basis functions

• Gaussian N-jet basis [7, 10, 8] with trainable scale (f) parameter

Fα
Fα

Spatially Continuous Filters
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• Continuous evolution of neural activations via neural ODEs [4, 12] with continuous depth C

Chen et al., NeurIPS, 2018 [4]

Depthwise Continuous Layers
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• DCN Architecture: Cascade of continuous ODE Blocks

• ODE Block:

• Convolutional filters: Gaussian N-jet

• Feature maps: Computed by an ODE solver

• Baseline models

• ODE-Net (spatially discrete)

• ResNet-blocks (spatially and depthwise discrete)
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DCNs are parameter efficient due to the structured filter definitions.

Model
Continuity

Accuracy (%) Parameters
Spatial Temporal

ODE-Net x X 89.6 ± 0.3 560K
ResNet-blocks x x 89.0 ± 0.2 555K
ResNet-SRF-blocks X x 88.3 ± 0.03 426K
ResNet-SRF-full X x 89.3 ± 0.4 323K

DCN-ODE X X 89.5 ± 0.2 429K
DCN-full X X 89.2 ± 0.3 326K
DCN f 98 X X 89.7 ± 0.3 472K

CIFAR-10 Classification
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DCNs are data efficient.

Model # images per class

2 4 8 16 32 52 64 103 128 512 1024

ResNet34† 17.5±2.5 19.5±1.4 23.3±1.6 28.3±1.4 33.2±1.2 – 41.7±1.1 – 49.1±1.3 – –

CNTK† 18.8±2.1 21.3±1.9 25.5±1.9 30.5±1.2 36.6±0.9 – 42.6±0.7 – 48.9±0.7 – –

ResNet-blocks 16.7±0.8 19.6±1.0 22.0±1.3 28.1±1.7 35.4±0.9 39.8±0.6 41.6±1.5 49.0±0.2 50.9±0.6 70.4±1.2 76.8±0.7

ODE-Net 16.8±2.8 20.5±0.8 23.1±2.5 29.8±0.8 36.4±1.0 41.7±1.2 42.3±0.2 48.6±0.5 50.7±0.7 71.7±1.5 77.4±0.5

DCN-ODE 16.4±1.6 19.8±0.7 26.5±0.9 31.2±0.6 37.7±0.6 44.5±0.8 48.0±1.3 54.2±0.8 58.2±0.7 75.5±0.8 79.7±0.3

Baseline results † from [2].

CIFAR-10 Classification: Small-data regime

8 Deep Continuous Networks Results



DCNs allow for meta-parametrization of filters as a function of depth C .

Model Parametrization Accuracy (%)

DCN-ODE f, U 89.46 ± 0.16

DCN f (C) f = 20C+1 , U 89.97 ± 0.30

DCN f (C2) f = 20C
2+1C+2 , U 89.93 ± 0.28

DCN f (C) , U(C) f = 20BC+1B , U = 0UC + 1U 89.88 ± 0.25

CIFAR-10 Classification: Filter meta-parametrization
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f distributions after training are consistent with biological observations [13].
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Similar to rate-based, continuous-receptive-field population models of biological vision [3, 1, 5],

DCNs display emergent pattern completion.
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• ODE-based dynamics are sensitive to con-

trast changes.

• Contrast robustness can be improved by

scaling the numerical ODE integration time

proportionately to input contrast at test time.

• Contrast-robust networks can cut down the

computational cost.
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We present spatially and depthwise-continuous DCN models:

• Data efficient

• Learn biologically plausible RF sizes

• Links to biological models from computational neuroscience

• Computational efficiency via contrast-robustness

Conclusion
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Thanks!

Please see the paper for more!
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