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ivation

Conventional feed-forward CNNs

® Spatially discrete: use discretized, typically 3 X 3 kernels a

® cannot learn the receptive field size during training
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Motivation

Conventional feed-forward CNNs

® Spatially discrete: use discretized, typically 3 X 3 kernels a

® cannot learn the receptive field size during training

. | | RN
Temporally discrete: use discrete, sequential layers I I I I

® cannot model the continuous evolution of neuronal activations
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Deep Continuous Networks

We present Deep Continuous Networks (DCNs):

® can learn the kernel size and receptive field size during training

® spatially continuous filter descriptions

3 Deep Continuous Networks Motivation



Deep Continuous Networks

We present Deep Continuous Networks (DCNs):

® can learn the kernel size and receptive field size during training

® spatially continuous filter descriptions

® depthwise continuous evolution of feature maps

® can model temporal dynamics of neuronal activations in response to images
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Spatially Continuous Filters

® Spatially continuous filters: weighted sum of basis functions

® Gaussian N-jet basis [7, 10, 8] with trainable scale (0°) parameter
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pthwise Continuo yers

® Continuous evolution of neural activations via neural ODEs [4, 12] with continuous depth ¢

Residual Network ODE Network
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Chen et al.,, NeurIPS, 2018 [4]
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Deep Continuous Networks

| Input Image (32x32x3) |

!
kxk conv, 32

ODE Block 1, 32

® Convolutional filters: Gaussian N-jet Downsampling block 1, 64

® Feature maps: Computed by an ODE solver ODE Block 2, 64

Downsampling block 2, 128

ODE Block 3, 128

Global Average Pooling

i
fc, 10

® DCN Architecture: Cascade of continuous ODE Blocks

® ODE Block:

i

6 Deep Continuous Networks DCN model



Deep Continuous Networks

| Input Image (32x32x3) |

!
kxk conv, 32

ODE Block 1, 32

® Convolutional filters: Gaussian N-jet Downsampling block 1, 64

® Feature maps: Computed by an ODE solver ODE Block 2, 64

® DCN Architecture: Cascade of continuous ODE Blocks

® ODE Block:

i

® Baseline models Downsampling block 2, 128
® ODE-Net (spatially discrete)
® ResNet-blocks (spatially and depthwise discrete) Global Average Pooling
fc, l10
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CIFAR-10 Classification

DCNs are parameter efficient due to the structured filter definitions.

Model Continuity Accuracy (%) Parameters
Spatial Temporal
ODE-Net X v 89.6 £ 0.3 560K
ResNet-blocks X X 89.0 £ 0.2 555K
ResNet-SRF-blocks v X 88.3 + 0.03 426K
ResNet-SRF-full v X 893+ 0.4 323K
DCN-ODE Vv Vv 89.5+ 0.2 429K
DCN-full v v 89.2+0.3 326K
DCN o/t v v 89.7+03 472K
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CIFAR-10 Classification: Small-data regime

DCNs are data efficient.

# images per class

Model

2 4 8 16 32 52 64 103 128 512 1024
ResNet34' 175425 | 19.5+1.4 | 23.3+1.6 | 28.3+1.4 | 33.2+1.2 - 41.7£11 - 49113 - -
CNTK-lL 18.8+21| 21.3+1.9 | 25.5+1.9 | 30.5+1.2 |36.6+0.9 - 42.6+0.7 - 489+0.7 - -

ResNet-blocks 16.7+0.8 | 19.6+1.0 | 22.0+1.3 | 28.1+1.7 |35.4+0.9 | 39.8+0.6

ODE-Net 16.8+2.820.5+0.8 | 23.1+2.5 [29.84+0.8 | 36.4+1.0 | 41.7+12

DCN-ODE 16.4+1.6 | 19.8+0.7 | 26.5+0.9 | 31.2+0.6 |37.7+0.6 | 44.5+0.8

41.6+15 | 49.0+£0.2|50.9+0.6 | 70.4+1.2 | 76.8+0.7
423+0.2|48.6+0.5|50.7+0.7 | 71.7+1.5 |77.4+0.5
48.0+1.3|54.2+0.8 | 58.2+0.7 | 75.5+0.8 | 79.7+0.3

Baseline results T from [2].
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CIFAR-10 Classification: Filter meta-parametrization

DCNs allow for meta-parametrization of filters as a function of depth .

Model Parametrization Accuracy (%)
DCN-ODE o, a 89.46 + 0.16
DCN o (1) o =241tb o 89.97 + 0.30
DCN o (£2) o = gat’btic o 89.93 + 0.28

DCN o (1), a(t) o =2%™Ps o =a,t+b, 89.88+025
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Learning the receptive field size

Learned scale o

o distributions after training are consistent with biological observations [13].

1.6

DCN-ODE

DCN-full
ResNet-SRF-blocks
ResNet-SRF-full

# of filters

3500
3000
2500
2000
1500
1000

500

—— block 1: convl
—— block 1: conv2
—— block 2: convl
—— block 2: conv2
—— block 3: convl
block 3: conv2

2 4
Learned scale o

Deep Continuous Networks

Results



Pattern Completion

Similar to rate-based, continuous-receptive-field population models of biological vision [3, 1, 5],

DCNs display emergent pattern completion.
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Efficient ODE computation via contrast robustness
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Conclusion

We present spatially and depthwise-continuous DCN models:

® Data efficient

® | earn biologically plausible RF sizes

® | inks to biological models from computational neuroscience

® Computational efficiency via contrast-robustness
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Thanks!

Please see the paper for more!
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