ICML 2021

Deep Continuous Networks

Nergis Tömen, Silvia L. Pintea, Jan van Gemert n.tomen@tudelft.nl

Computer Vision Lab, TU Delft

Motivation

Kar et al., Nature Neuroscience, 2019 [9]

Ecker et al., ICLR, 2019 [6]

Lindsey et al., ICLR, 2019 [11]

Conventional feed-forward CNNs

- Spatially discrete: use discretized, typically 3×3 kernels
- cannot learn the receptive field size during training

Conventional feed-forward CNNs

- Spatially discrete: use discretized, typically 3×3 kernels
- cannot learn the receptive field size during training

• Temporally discrete: use discrete, sequential layers

cannot model the continuous evolution of neuronal activations

We present Deep Continuous Networks (DCNs):

• **spatially continuous** filter descriptions

• can learn the kernel size and receptive field size during training

We present Deep Continuous Networks (DCNs):

• spatially continuous filter descriptions

• can learn the kernel size and receptive field size during training

• depthwise continuous evolution of feature maps

can model temporal dynamics of neuronal activations in response to images

- Spatially continuous filters: weighted sum of basis functions
- Gaussian N-jet basis [7, 10, 8] with trainable scale (σ) parameter

• Continuous evolution of neural activations via neural ODEs [4, 12] with continuous depth t

Chen et al., NeurIPS, 2018 [4]

DCN Architecture: Cascade of continuous ODE Blocks

• ODE Block:

- Convolutional filters: Gaussian N-jet
- Feature maps: Computed by an ODE solver

DCN Architecture: Cascade of continuous ODE Blocks

• ODE Block:

- Convolutional filters: Gaussian N-jet
- Feature maps: Computed by an ODE solver
- Baseline models
 - ODE-Net (spatially discrete)
 - ResNet-blocks (spatially and depthwise discrete)

DCNs are **parameter efficient** due to the structured filter definitions.

Model	Continuity		Accuracy (%)	Parameters	
	Spatial	Temporal			
ODE-Net	x	\checkmark	89.6 ± 0.3	560K	
ResNet-blocks	х	x	89.0 ± 0.2	555K	
ResNet-SRF-blocks	\checkmark	x	88.3 ± 0.03	426K	
ResNet-SRF-full	\checkmark	×	89.3 ± 0.4	323K	
DCN-ODE	\checkmark	\checkmark	89.5 ± 0.2	429K	
DCN-full	\checkmark	\checkmark	89.2 ± 0.3	326K	
DCN σ^{ji}	\checkmark	\checkmark	89.7 ± 0.3	472K	

DCNs are data efficient.

Model	# images per class										
	2	4	8	16	32	52	64	103	128	512	1024
ResNet34 ^{\dagger}	17.5±2.5	19.5±1.4	23.3±1.6	28.3±1.4	33.2±1.2	-	41.7±1.1	_	49.1±1.3	-	-
CNTK [†]	18.8 ±2.1	21.3 ±1.9	25.5±1.9	30.5±1.2	36.6±0.9	-	42.6±0.7	-	48.9±0.7	-	-
ResNet-blocks	16.7 ± 0.8	19.6±1.0	22.0±1.3	28.1±1.7	35.4±0.9	39.8 ± 0.6	41.6±1.5	49.0 ± 0.2	50.9±0.6	70.4±1.2	76.8 ± 0.7
ODE-Net	16.8±2.8	20.5±0.8	23.1±2.5	29.8±0.8	36.4±1.0	41.7±1.2	42.3±0.2	48.6±0.5	50.7±0.7	71.7±1.5	77.4±0.5
DCN-ODE	16.4±1.6	19.8±0.7	26.5 ±0.9	31.2 ±0.6	37.7 ±0.6	44.5 ±0.8	48.0 ±1.3	54.2 ±0.8	58.2 ±0.7	75.5 ±0.8	79.7 ±0.3

Baseline results \dagger from [2].

DCNs allow for **meta-parametrization** of filters as a function of depth *t*.

Model	Parametrization	Accuracy (%)
DCN-ODE	σ , $lpha$	89.46 ± 0.16
DCN $\sigma(t)$	$\sigma = 2^{at+b}$, α	89.97 ± 0.30
DCN $\sigma(t^2)$	$\sigma = 2^{at^2+bt+c}$, α	89.93 ± 0.28
DCN $\sigma(t)$, $\alpha(t)$	$\sigma = 2^{a_s t + b_s}$, $\alpha = a_\alpha t + b_\alpha$	89.88 ± 0.25

Learning the receptive field size

σ distributions after training are consistent with biological observations [13].

Similar to rate-based, continuous-receptive-field population models of biological vision [3, 1, 5], DCNs display **emergent pattern completion**.

Efficient ODE computation via contrast robustness

- ODE-based dynamics are **sensitive to contrast** changes.
- Contrast robustness can be improved by scaling the numerical ODE integration time proportionately to input contrast at test time.
- Contrast-robust networks can cut down the computational cost.

We present spatially and depthwise-continuous DCN models:

- Data efficient
- Learn biologically plausible RF sizes
- Links to biological models from computational neuroscience
- Computational efficiency via contrast-robustness

Please see the paper for more!

References

- Shunichi Amari. "Dynamics of pattern formation in lateral-inhibition type neural fields". In: Biological Cybernetics 27.2 (1977), pp. 77–87.
- [2] Sanjeev Arora et al. "Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks". In: International Conference on Learning Representations (ICLR). 2020.
- [3] Paul C Bressloff et al. "Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex". In: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356.1407 (2001), pp. 299–330.
- [4] Ricky T. Q. Chen et al. "Neural Ordinary Differential Equations". In: NeurIPS (2018).
- [5] Stephen Coombes. "Waves, bumps, and patterns in neural field theories". In: Biological Cybernetics 93.2 (2005), pp. 91–108.
- [6] Alexander S Ecker et al. "A rotation-equivariant convolutional neural network model of primary visual cortex". In: International Conference on Learning Representations (ICLR). 2019.
- [7] Luc Florack et al. "The Gaussian scale-space paradigm and the multiscale local jet". In: IJCV 18.1 (1996), pp. 61–75.
- [8] Jorn-Henrik Jacobsen et al. "Structured receptive fields in CNNs". In: CVPR. 2016, pp. 2610–2619.
- [9] Kohitij Kar et al. "Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior". In: Nature Neuroscience 22.6 (2019), pp. 974–983.
- [10] Tony Lindeberg. Scale-space theory in computer vision. Vol. 256. Springer Science & Business Media, 2013.
- [11] Jack Lindsey et al. "A Unified Theory of Early Visual Representations from Retina to Cortex through Anatomically Constrained Deep CNNs". In: International Conference on Learning Representations (ICLR). 2019.
- [12] Lars Ruthotto and Eldad Haber. "Deep neural networks motivated by partial differential equations". In: Journal of Mathematical Imaging and Vision (2019), pp. 1–13.
- [13] Hsin-Hao Yu et al. "Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity". In: European Journal of Neuroscience 31.6 (2010), pp. 1043–1062.