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Neural architecture search

- Neural architecture search (NAS) automatically optimizes network for best accuracy given various
constraints, e.g., FLOPs, latency, etc
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NAS: a brief overview
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Supernet based NAS (one-shot)

- A supernet assembles all the architectures as its sub-networks via weight-sharing

- Decouple NAS into two separate steps:
1) training the supernet such that all sub-networks simultaneously reach good accuracy
2) searching the best model given various resource constraints
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Figure: An overview of supernet based NAS.
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Supernet training with knowledge distillation

- Optimization goal: all sub-networks simultaneously reach good accuracy

- Optimization steps: for each mini-batch, 1) train the largest sub-network; 2) train k sub-networks with KD
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Figure: An illustration of training supernet with KD. Subnetworks are part of
the supernet with weight-sharing. The colored part highlights the selected
parameters.



Supernet training with knowledge distillation

- Optimization goal: all sub-networks simultaneously reach good accuracy

- Optimization steps: for each mini-batch, 1) train the largest sub-network; 2) train k sub-networks with KD
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Figure: An illustration of training supernet with KD. Subnetworks are part of
the supernet with weight-sharing. The colored part highlights the selected
parameters.

For each mini-batch

e Train the largest sub-network with ground
truth labels

e Train k sub-network samples with KD




KD is the key for good performance

- The success of supernet training heavily relies on KD.
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Distillation by KL minimization

- Let p denote the teacher model and g denote the

student model
- Traditional KD (e.g., Hinton et al., 2015) trains q by distilling

knowledge from p via minimizing Dark knowledge
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Potential failure cases of KD

Probability
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Limitations of KL-based KD
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Generalizing KL with alpha-divergence

Alpha-divergence a € R\{0,1} :

minDa(y | )= — B[ (2) -1

Alpha-divergence generalizes KL divergence:

Reverse KL KL
o — —00 < >0 — 00
a=20 a=1
KL(q || ») KL(p || q)

Alpha-divergence has been widely explored in the literature [e.g., Amari, 1985; Minka et al., 2005;
Hernandez-Lobato et al., 2016; Li & Turner 2016; Opper & Winther 2005; Dieng et al., 2016 ]
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Algorithm: KD with adaptive alpha-divergence

- Minimizing an adaptive alpha-divergence

Doya_(p |l Q)=maX{ Do_(p |l @), Da,(p || 9) }

penalizing penalizing
over-estimation under-estimation



Algorithm: KD with adaptive alpha-divergence

- Minimizing an adaptive alpha-divergence

Doya_(p | Q)=maX{ Do (p || 95 Dar(p | g }
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- Gradients of alpha-divergence: hard to optimize (e.g., witha,=1and a =-1)
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Algorithm: KD with adaptive alpha-divergence

- Minimizing an adaptive alpha-divergence

Do, o (| q)=maX{ Do (p |l 95 Do, | 9 }

W W
penalizing penalizing
over-estimation under-estimation

- Gradients of alpha-divergence: hard to optimize (e.g., witha,=1and a =-1)

1| “ |
VoDa(p || 9) = ~ -E, (g) Viog g

- Approximating gradients (equivalent to minimizing a f-divergence)

. 1 . o
VoDa(p || q) = —E]Eq [Chpﬂ ((g) )V log q] )

with Clips(t) = min(¢, 8)



Training supernets with adaptive KD

_ For each mini-batch

e Train the largest sub-network p with ground truth labels
e Sample k sub-networks

e FOR each sub-network q:

o If baseline (KL-based KD), minimizing:
KL( | )

o If adaptive KD (ours), minimizing:

Da+,a_ (p ” Q)




Application: Slimmable neural networks

- A single model can run at different widths, allowing adaptive inference efficiency vs. accuracy
tradeoffs (vuetal, ICLR17)
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Figure: An illustration of Slimmable neural networks. This figure is adapted from Yu et al., ICLR17.



Slimmable neural networks results

- Training with sandwich rule sampling and inplace KD (vu et al., 2019)

Model | Method 0.25x 0.3x 035x 04x 045x 0.5x 0.55x 0.6x 0.65x 0.7x 0.75x
w/o KD 539 553 57.1 591 61.1 629 640 658 669 679 68.8

MbV1 | w/ KL-KD 564 578 595 610 630 644 655 67.1 683 69.1 69.8
w/ Adaptive-KD (ours) | 56.4 57.9 59.7 61.7 634 650 662 67.7 688 695 70.1
w/o KD - - 619 628 63.7 645 651 672 677 683 69.0

MbV?2 | w/ KL-KD - - 63.2 644 651 660 66.5 684 69.2 69.5 70.1
w/ Adaptive-KD (ours) - - 63.7 64.6 656 663 669 68.7 693 699 70.5

Table: Top-1 validation accuracy on ImageNet for Slimmable MobileNetV1 networks (denoted by MbV1) and Slimmable
MobileNetV2 networks (denoted by MbV?2) trained with different KD strategies.



Application: Weight-sharing search space
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Figure: An illustration of supernets. The supernet in this figure provides a set of choices of the input resolution,
channel widths, number of layers, kernel sizes, and expansion ratios. This figure is from AttentiveNAS (Wang et al.,
CVPR’21)



Weight-sharing NAS results

- Following AttentiveNAS (wang et al., CVPR’21).

- First train supernets with different KD strategies; then run evolutionary search to sample from the supernets
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Improvements on SOTA

- We call our model as AlphaNets

- Directly evaluating the discovered models from AttentiveNAS.

81 -

Top-1 validation accuracy

o0
o

~
(o)

~
oo

~
~N

~
(@)

AlphaNet-A6
As paS
aa O
A3 O
AI”AZ/O | ) D
0 < O AlphaNet (ours)
Ao,,,/’ v O Efficientnet
o} 4 Mobilenetv3
. ; O MNasNet
4 BigNas
"' V FBNetv2
) ° | | ?FA(#75lep)
200 300 400 500 600 700

MFLOPs

800

Model
AlphaNet-AO

AlphaNet-A1
AlphaNet-A2
AlphaNet-A3
AlphaNet-A4

AlphaNet-A5
(small)

AlphaNet-A5
(base)

MFLOPs
203

279
317
357
444
491

596

Top-1
77.9

78.9
79.2
79.4
80.0
80.3

80.6



Improvements on standard KD settings

- Training a single neural network with a pretrained teacher model, as in conventional KD setup

Teacher MobileNetV1 1.0x MobileNetV2 1.0x RegNetY
Student ShuffleNet 0.5x  ShuffleNet 1.0x | MobileNetV2 0.25x  MobileNetV2 0.5x | DeiT-tiny
w/ KL-KD (T=1) 60.3 69.3 54.4 65.3 74.6
Adaptive-KD (Ours) 61.1 69.5 55.0 65.7 75.2

Table: Additional KD results on ImageNet. Our MobileNet V1 and V2 teacher has a top-1accuracy of 73.2% and
72.9%, respectively. All ShuffleNets (Ma et al., 2018) and MobileNetV2 models are trained for 120 epochs with
standard random crop and resize data augmentation. For DeiT-tiny (Touvron et al., 2020), we exactly follow the
settings of DeiT for training and use a RegNetY (Radosavovic et al., 2020) as the teacher model.



Conclusions

e Proposed animproved KD strategy to train supernets
o Penalizing both uncertainty overestimation and underestimation
o Easy toimplement: a single setting works well for all the cases

o Improved accuracy vs. efficiency tradeoffs on ImageNet

Code and pretrained
models:
https://github.com/facebo
okresearch/AlphaNet
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