AlphaNet: Improved Training of Supernets with Alpha-divergence

Dilin Wang ¹, Chengyue Gong ², Meng Li ¹, Qiang Liu ², Vikas Chandra ¹

¹ Facebook ² UT Austin

Code and pretrained models:

https://github.com/facebookresearch/AlphaNet

Neural architecture search

- Neural architecture search (NAS) automatically optimizes network for best accuracy given various constraints, e.g., FLOPs, latency, etc

NAS: a brief overview

Black-box optimization based NAS

- NasNet (Zoph et al., 2017)
- MnasNet (Tan et al., 2019)
- FBNetV3 (Dai et al., 2021)

	Low search cost	Simultaneously deliver a set of Pareto models	No retraining or finetuning
Black-box optimization based NAS	X	X	X

NAS: a brief overview

Black-box optimization based NAS

- NasNet (Zoph et al., 2017)
- MnasNet (Tan et al., 2019)
- FBNetV3 (Dai et al., 2021)

Continuous relaxation based NAS

- DARTS (Liu et al., 2019)
- ProxylessNAS (Cai et al., 2019)
- FBNetV2 (Wan et al., 2020)

	Low search cost	Simultaneously deliver a set of Pareto models	No retraining or finetuning
Black-box optimization based NAS	X	X	X
Continuous relaxation based NAS		X	X

Supernet based NAS (one-shot)

- A supernet assembles all the architectures as its sub-networks via weight-sharing
- Decouple NAS into two separate steps:
 - 1) training the supernet such that all sub-networks simultaneously reach good accuracy
 - 2) searching the best model given various resource constraints

Figure: An overview of supernet based NAS.

NAS: a brief overview

Black-box optimization based NAS

- NasNet (Zoph et al., 2017)
- MnasNet (Tan et al., 2019)
- FBNetV3 (Dai et al., 2021)

Continuous relaxation based NAS

- DARTS (Liu et al., 2019)
- ProxylessNAS (Cai et al., 2019)
- FBNetV2 (Wan et al., 2020)

Supernet based NAS (one-shot)

- BigNAS (Yu et al., 2020)
- Once-for-all (Cai et al., 2020)
- AttentiveNAS (Wang et al., 2021)

	Low search cost	Simultaneously deliver a set of Pareto models	No retraining or finetuning
Black-box optimization based NAS	X	X	X
Continuous relaxation based NAS		X	X
One-shot supernet based NAS			If supernet is well trained

Supernet training with knowledge distillation

- Optimization goal: all sub-networks simultaneously reach good accuracy
- Optimization steps: for each mini-batch, 1) train the largest sub-network; 2) train k sub-networks with KD

For each mini-batch

 Train the largest sub-network with ground truth labels

Figure: An illustration of training supernet with KD. Subnetworks are part of the supernet with weight-sharing. The colored part highlights the selected parameters.

Supernet training with knowledge distillation

- Optimization goal: all sub-networks simultaneously reach good accuracy
- Optimization steps: for each mini-batch, 1) train the largest sub-network; 2) train k sub-networks with KD

Figure: An illustration of training supernet with KD. Subnetworks are part of the supernet with weight-sharing. The colored part highlights the selected parameters.

For each mini-batch

- Train the largest sub-network with ground truth labels
- Train k sub-network samples with KD

KD is the key for good performance

- The success of supernet training heavily relies on KD.

Figure: An illustration of training supernet with KD. Sub-networks are part of the supernet with weight-sharing. The colored part highlights the selected parameters.

KD leads to significant improvements!

Distillation by KL minimization

- Let **p** denote the teacher model and **q** denote the student model
- Traditional KD (e.g., Hinton et al., 2015) trains **q** by distilling knowledge from **p** via minimizing

$$\min_{m{q}} \mathrm{KL}(m{p} \parallel m{q}) = \mathbb{E}_{m{p}} \bigg[\log \frac{m{p}}{m{q}} \bigg]$$

Potential failure cases of KD

Case 1: Uncertainty under-estimation

The student network under-estimates the uncertainty of the teacher model and misses important local modes of the teacher model.

Case 2: Uncertainty over-estimation

The student network over-estimates the uncertainty of the teacher model and mis-classifies the most dominant mode of the teacher model.

Limitations of KL-based KD

Case 1: Uncertainty under-estimation

The student network under-estimates the uncertainty of the teacher model and misses important local modes of the teacher model.

KL loss penalizes less for over-estimation

Case 2: Uncertainty over-estimation

The student network over-estimates the uncertainty of the teacher model and mis-classifies the most dominant mode of the teacher model.

Generalizing KL with alpha-divergence

- Alpha-divergence $\alpha \in \mathbb{R} \setminus \{0,1\}$:

$$\min_{\mathbf{q}} \mathrm{D}_{\alpha}(\mathbf{p} \parallel \mathbf{q}) = \frac{1}{\alpha(\alpha-1)} \mathbb{E}_{\mathbf{q}} \left[\left(\frac{\mathbf{p}}{\mathbf{q}} \right)^{\alpha} - 1 \right]$$

- Alpha-divergence generalizes KL divergence:

- Alpha-divergence has been widely explored in the literature [e.g., Amari, 1985; Minka et al., 2005; Hernandez-Lobato et al., 2016; Li & Turner 2016; Opper & Winther 2005; Dieng et al., 2016]

Why alpha-divergence?

Case 1: Uncertainty under-estimation.

Heavily penalized by an alpha-divergence with a large and positive alpha value (e.g., $\alpha=1$)

Why alpha-divergence?

Case 1: Uncertainty under-estimation.

Case 2: Uncertainty over-estimation.

Heavily penalized by an alpha-divergence with a small and negative alpha value (e.g., $\alpha=-1$)

Algorithm: KD with adaptive alpha-divergence

- Minimizing an adaptive alpha-divergence

$$D_{\alpha_{+},\alpha_{-}}(\mathbf{p} \parallel \mathbf{q}) = \max \left\{ \begin{array}{c|c} D_{\alpha_{-}}(\mathbf{p} \parallel \mathbf{q}) \\ \text{penalizing} \\ \text{over-estimation} \end{array}, \quad D_{\alpha_{+}}(\mathbf{p} \parallel \mathbf{q}) \\ \begin{array}{c} D_{\alpha_{+}}(\mathbf{p} \parallel \mathbf{q}) \\ \text{penalizing} \\ \text{under-estimation} \end{array} \right\}.$$

Algorithm: KD with adaptive alpha-divergence

- Minimizing an adaptive alpha-divergence

$$D_{\alpha_{+},\alpha_{-}}(p \parallel q) = \max \left\{ \begin{array}{c|c} D_{\alpha_{-}}(p \parallel q) \\ \hline penalizing \\ over-estimation \end{array}, \begin{array}{c|c} D_{\alpha_{+}}(p \parallel q) \\ \hline penalizing \\ under-estimation \end{array} \right\}.$$

- Gradients of alpha-divergence: hard to optimize (e.g., with α_{\perp} = 1 and α_{\perp} = -1)

$$abla_{ heta} D_{lpha}(\mathbf{p} \parallel \mathbf{q}) = -rac{1}{lpha} \mathbb{E}_{\mathbf{q}} \left[\left(rac{\mathbf{p}}{\mathbf{q}}
ight)^{lpha}
abla \log \mathbf{q}
ight]$$

Algorithm: KD with adaptive alpha-divergence

- Minimizing an adaptive alpha-divergence

$$D_{\alpha_{+},\alpha_{-}}(p \parallel q) = \max \left\{ \begin{array}{c|c} D_{\alpha_{-}}(p \parallel q) \\ \hline penalizing \\ over-estimation \end{array}, \begin{array}{c|c} D_{\alpha_{+}}(p \parallel q) \\ \hline penalizing \\ under-estimation \end{array} \right\}.$$

- Gradients of alpha-divergence: hard to optimize (e.g., with α_{\perp} = 1 and α_{\perp} = -1)

$$abla_{ heta} D_{lpha}(\mathbf{p} \parallel \mathbf{q}) = -rac{1}{lpha} \mathbb{E}_{\mathbf{q}} \left[\left(rac{\mathbf{p}}{\mathbf{q}}
ight)^{lpha}
abla \log \mathbf{q}
ight]$$

Approximating gradients (equivalent to minimizing a f-divergence)

$$\tilde{\nabla}_{\theta} D_{\alpha}(\mathbf{p} \parallel \mathbf{q}) = -\frac{1}{\alpha} \mathbb{E}_{\mathbf{q}} \left[\text{Clip}_{\beta} \left(\left(\frac{\mathbf{p}}{\mathbf{q}} \right)^{\alpha} \right) \nabla \log \mathbf{q} \right],$$
with $\text{Clip}_{\beta}(t) = \min(t, \beta)$

Training supernets with adaptive KD

For each mini-batch __

- Train the largest sub-network **p** with ground truth labels
- Sample k sub-networks
- FOR each sub-network q:
 - If baseline (KL-based KD), minimizing:

$$KL(p \parallel q)$$

If adaptive KD (ours), minimizing:

$$D_{\alpha_+,\alpha_-}(\mathbf{p} \parallel \mathbf{q})$$

Application: Slimmable neural networks

 A single model can run at different widths, allowing adaptive inference efficiency vs. accuracy tradeoffs (Yu et al., ICLR'17)

Figure: An illustration of Slimmable neural networks. This figure is adapted from Yu et al., ICLR'17.

Slimmable neural networks results

- Training with sandwich rule sampling and inplace KD (Yu et al., 2019)

Model	Method	0.25×	0.3×	0.35×	0.4×	0.45×	0.5×	0.55×	0.6×	0.65×	0.7×	0.75×
	w/o KD	53.9	55.3	57.1	59.1	61.1	62.9	64.0	65.8	66.9	67.9	68.8
MbV1	w/ KL-KD	56.4	57.8	59.5	61.0	63.0	64.4	65.5	67.1	68.3	69.1	69.8
	w/ Adaptive-KD (ours)	56.4	57.9	59.7	61.7	63.4	65.0	66.2	67.7	68.8	69.5	70.1
	w/o KD	-	-	61.9	62.8	63.7	64.5	65.1	67.2	67.7	68.3	69.0
MbV2	w/ KL-KD	-	s. s	63.2	64.4	65.1	66.0	66.5	68.4	69.2	69.5	70.1
	w/ Adaptive-KD (ours)	-	-	63.7	64.6	65.6	66.3	66.9	68.7	69.3	69.9	70.5

Table: Top-1 validation accuracy on ImageNet for Slimmable MobileNetV1 networks (denoted by MbV1) and Slimmable MobileNetV2 networks (denoted by MbV2) trained with different KD strategies.

Application: Weight-sharing search space

Figure: An illustration of supernets. The supernet in this figure provides a set of choices of the input resolution, channel widths, number of layers, kernel sizes, and expansion ratios. This figure is from AttentiveNAS (Wang et al., CVPR'21)

Weight-sharing NAS results

- Following Attentive NAS (Wang et al., CVPR'21).
- First train supernets with different KD strategies; then run evolutionary search to sample from the supernets

Improvements on SOTA

- We call our model as AlphaNets
- Directly evaluating the discovered models from AttentiveNAS.

Model	MFLOPs	Top-1
AlphaNet-A0	203	77.9
AlphaNet-A1	279	78.9
AlphaNet-A2	317	79.2
AlphaNet-A3	357	79.4
AlphaNet-A4	444	80.0
AlphaNet-A5 (small)	491	80.3
AlphaNet-A5 (base)	596	80.6

Improvements on standard KD settings

- Training a single neural network with a pretrained teacher model, as in conventional KD setup

Teacher	MobileNetV1 1.0x		MobileNe	RegNetY	
Student	ShuffleNet 0.5x	ShuffleNet 1.0x	MobileNetV2 0.25x	MobileNetV2 0.5x	DeiT-tiny
w/ KL-KD (T=1)	60.3	69.3	54.4	65.3	74.6
Adaptive-KD (Ours)	61.1	69.5	55.0	65.7	75.2

Table: Additional KD results on ImageNet. Our MobileNet V1 and V2 teacher has a top-1 accuracy of 73.2% and 72.9%, respectively. All ShuffleNets (Ma et al., 2018) and MobileNetV2 models are trained for 120 epochs with standard random crop and resize data augmentation. For DeiT-tiny (Touvron et al., 2020), we exactly follow the settings of DeiT for training and use a RegNetY (Radosavovic et al., 2020) as the teacher model.

Conclusions

- Proposed an improved KD strategy to train supernets
 - Penalizing both uncertainty overestimation and underestimation
 - o Easy to implement: a single setting works well for all the cases
 - o Improved accuracy vs. efficiency tradeoffs on ImageNet

Code and pretrained models:

https://github.com/facebo okresearch/AlphaNet

