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Correlation Clustering

• Introduced by Bansal, Blum, and Chawla [2004]

• Many applications in Machine Learning

• Image Segmentation (Wirth [2010])

• Spam Detection (Bonchi et al. [2014], Ramachandran et al. [2007])

• Coreference Resolution (Cohen and Richman [2001, 2002])

• Multi-Person Tracking (Tang et al. [2016, 2017])

• Data Mining (Filkov and Skiena [2003])

• ...
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Problem Definition

• Input: G = (V ,E ), weight : E → R≥0, label : E → {+,−}

• Output: Clustering C of the vertex set V
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Problem Definition

• (u, v) ∈ E+ is in disagreement with C if C(u) 6= C(v).

•
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Local Objectives in Correlation Clustering

• Let the disagreements vector be a vector indexed by the vertices of G .

• Given a clustering P for each vertex u ∈ V ,

disu(P) =
∑

(u,v)∈E

wuv · 1{(u, v) is in disagreement with P}.

• `p objective is to find a clustering P that minimizes the `p-norm of
the disagreements vector:

min

(∑
u∈V
|disu(P)|p

) 1
p

.
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Local Objectives in Correlation Clustering II

• `1 objective is equivalent to minimizing the total weight of
disagreements

• `∞ objective is equivalent to minimizing the weight of disagreements
at the vertex that is worst off

• `1 objective is a global objective.

• For higher values of p, `p objective becomes a local objective.
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Known Results: Complete Unweighted Graph

`1 objective

Approximation Ratio
≈ 20000 Bansal, Blum, and Chawla [2004]

4 Charikar, Guruswami, and Wirth [2003]

3 and 2.5 Ailon, Charikar, and Newman [2008]

2.06 Chawla, Makarychev, Schramm, and Yaroslavtsev [2015]

Integrality Gap
2 Charikar, Guruswami, and Wirth [2003]
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Known Results: Complete Unweighted Graph

`p objective

Approximation Ratio
48 Puleo and Milenkovic [2018]

7 Charikar, Gupta, and Schwartz [2017]

5 Kalhan, Makarychev, and Zhou [2019]
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Known Results: Arbitrary Weighted Graph

`1 objective

Approximation Ratio

O(log n)
Charikar, Guruswami, and Wirth [2003];

Demaine, Emanuel, Fiat, and Immorlica [2006]

Integrality Gap

O(log n)
Charikar, Guruswami, and Wirth [2003];

Demaine, Emanuel, Fiat, and Immorlica [2006]
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Known Results: Arbitrary Weighted Graph

`p objective

Approximation Ratio
O(
√
n) (for p =∞) Charikar, Gupta, and Schwartz [2017]

O
(
n

1
2
− 1

2p · (log n)
1
2
+ 1

2p

)
Kalhan, Makarychev, and Zhou [2019]

Integrality Gap

Ω
(
n

1
2
− 1

2p

)
Kalhan, Makarychev, and Zhou [2019]
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Correlation Clustering with Asymmetric Classification Errors
Jafarov, Kalhan, Makarychev, and Makarychev [2020]

• Let G be a complete graph, α ∈ (0, 1] and w > 0 a scaling
parameter.

• For every positive edge e ∈ E+ we have w e ∈ [αw ,w ]

• For every negative edge e ∈ E− we have w e ∈ [αw ,∞)

3 + 2 ln 1
α approximation for the `1 objective (Jafarov et al. [2020])
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Main Result

Main Theorem

There exists a polynomial-time O
(

( 1
α)

1
2
− 1

2p · log 1
α

)
-approximation

algorithm for minimizing the `p objective in the Correlation Clustering with
Asymmetric Classification Errors model.

• p = 1: We get O(log 1
α) approximation

• p = 2: We get Õ
(
(1/α)1/4

)
approximation

� Õ
(
n1/4
)

when 1/α� n.

• p =∞: We get Õ
(√

1/α
)

approximation

� O
(√

n
)

when 1/α� n.

Thank you!
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