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What data do we need?
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Observational Sampling from APO data (OSAPO)
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Observational Sampling from APO data (OSAPO)
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Observational sampling from RCT data (OSRCT)
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Observational sampling from RCT data (OSRCT)
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Observational sampling from RCT data (OSRCT)
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Observational sampling from RCT data (OSRCT)
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Observational sampling from RCT data (OSRCT)
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Observational sampling from RCT data (OSRCT)

Select Remove missing
D | T | O | C | treatment [ID "1 [ O [ € | treatment rows
1 1 5.7 . — 1 5 7 ID T 9 C
N VN T I A
2 1 4.5 H 3 0 15 W 3 0 1.5 | H
3 1 ? H T -
3 0 1.5 N Constructed observational
4 1 9.3 _ data
4 0 ? _

RCT data




Observational sampling from RCT data (OSRCT)

Select Remove missing
ID [ T [ O | © | treatment [ID T [ O [ € | treatment rows
1 1 5.7 . — 1 5 7 ID T 9 C
1 10 2 L I A
2 1 4.5 H 3 0 15 W 3 0 1.5 H
3 1 ? H T -
3 0 1.5 - Constructed observational
4 1 5.3 _ data
4 0 ? _
RCT data

Effect estimates

causal effects




Observational sampling from RCT data (OSRCT)
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Using RCT data

Theorem 1. For RCT data set Dyper, APO data set D ,po, and binary treatment

T €{0,1} with P(T'=1) = P(T =0) = 0.5 in Dgcr, and units 1,

PDOSRCT (T — t) = 0.0 % PDOSAPO (Ti — t): for all unats 1.

Observational sampling of RCT data is equivalent
to observational sampling of APO data



Other features of RCT data

Theorem 2. For binary treatment T € {0,1} and RCT data set D e,

if either P(T'=1) = P( 0) = 0.5, or E|P(T, = 1|C)| = 0.5,

then E||Dogsger|l = 0.5|Dger|.

In most cases, regardless of biasing strength, the
sub-sampled data will be half the size of the
original data



Other features of RCT data

Theorem 3. For binary treatment T € {0,1}, biasing covariates C, outcome Y,

estimated outcome )A/, biased sample Dyspor and complementary sample Dyspor, let

ps = P(Ty = t;|C;). Then, E[Y —Y] for Dosper = E[(Y —Y)1-] for Dosper.

The data rejected during sub-sampling can be
reweighted according to the biasing probability
and used as a held-out test set
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Data sources

o APO data (3)
e computational systems
e RCT data (15)
o publicly available RCTs
e Synthetic-response data (10)

e ACIC 2016 Competition, IBM Causal Inference
Benchmarking Framework

e Simulators (9)
e Neuropathic Pain Simulator, Nemo, Whynot
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Algorithms
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Algorithms

Focus on Focus on
modeling treatment modeling outcome
 Propensity score « QOutcome
matching (PSM) regression (OR)
. Inverse probability of « Bayesian additive
treatment weighting regression trees
(IPTW) (BART)

o Causal forests (CF)

Combination of treatment and outcome estimation
e Doubly-robust estimation (DR)

 Neural network method (NN) 12



Results
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Results
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Normalized error
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For more details, please see our paper!
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to Evaluate Methods for Observational Causal Inference
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Abstract

Methods that infer causal dependence from obser-
vational data are central to many areas of science,

including medicine, economics, and the social
sciences. A variety of theoretical properties of
these methods have been proven, but empirical
evaluation remains a challenge, largely due to the
lack of observational data sets for which treatment
effect is known. We describe and analyze obser-
vational sampling from randomized controlled
trials (OSRCT), a method for evaluating causal
inference methods using data from randomized
controlled trials (RCTs). This method can be used
to create constructed observational data sets with
corresponding unbiased estimates of treatment ef-
fect, substantially increasing the number of data
sets available for empirical evaluation of causal
mference methods We show that 1n exnectation

fects from observational data. Such interest is understand-
able, given the centrality of causal questions in fields such as
medicine, economics, sociology, and political science (Mor-
gan & Winship, 2015). Causal inference has also emerged as
an important class of methods for improving the explainabil-
ity and fairness of machine learning systems, since causal
models can explicitly represent the underlying mechanisms
of systems and their likely behavior under counterfactual
conditions (Kusner et al., 2017; Pearl, 2019).

However, evaluating causal inference methods is far more
challenging than evaluating purely associational methods.
Both types of methods can be analyzed theoretically. How-
ever, empirical analysis—Ilong a driver of research progress
in machine learning and statistics—has been increasingly
recognized as vital for research progress in causal inference
(e.g., Dorie et al., 2019; Gentzel et al., 2019), and empiri-
cal evaluation is substantially more challenging to perform
in the case of causal inference. Many associational mod-



