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Standard training can perform poorly on worst group, especially if there are spurious correlations
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Low data + spurious correlation doesn’t hold
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Group reweighting (Shimodaira ‘00; Sagawa et al., ‘20; Byrd & Lipton ‘18)

Group DRO (Sagawa et al., ‘20):
Minimize worst-group loss

...but requires expensive training group annotations
Generalizes ⇒ high worst-group performance
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(Borkan et al., ‘19; Koh et al., ‘20) 

Experiments: Datasets
Waterbirds

(Wah et al., ‘11; Sagawa et al., ‘20) 

y: landbird
a: in water

y: landbird
a: on land

y: entailment                                  

S1: Read for Slate's take on Jackson's findings.
S2: Slate had an opinion on Jackson's findings.

  a: no negation

S1: Vrenna and I both fought him and he nearly 
took us.
S2: Neither Vrenna nor myself have ever fought 
him.

y: contradiction                                  

y: blond
a: female

y: not blond
a: male

  a: has negation

Maybe you should learn to write a coherent 
sentence so we can understand WTF your 
point is.

y: toxic   a: none

I applaud your father. He was a good man! 
We need more like him.

y: non-toxic   a: male
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CivilComments 96.9% 7.8% 0.9%
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Experiments: Worst Group in Error Set 

JTT automatically identifies a large fraction of the worst-group examples

Worst-group examples occur in the error set at a much higher rate than in the training data

⇒ JTT achieves high worst-group accuracy

Dataset Worst-group
Recall

Worst-group
Precision

Worst-group
Empirical Rate

Waterbirds 87.5% 19.1% 1.2%

CelebA 94.7% 9.4% 0.9%

MultiNLI 67.1% 2.2% 1.0%

CivilComments 96.9% 7.8% 0.9%



Experiments: Other Groups in Error Set 

Enrichment: how much more frequently a group appears in the error set than in the training data 

Waterbirds CelebA
Group Enrichment ERM test acc.

land background, waterbird 15.92x 72.6%

water background, landbird 6.97x 73.3%

water background, waterbird 2.40x 96.3%

land background, landbird 0.02x 99.3%

Group Enrichment ERM test acc.

blond male 10.44x 47.2%

blond female 5.42x 89.1%

non-blond male 0.32x 99.3%

non-blond female 0.01x 95.1%
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Summary

https://github.com/anniesch/jttCode: 

● Standard training frequently performs poorly on the worst group, 
especially in the presence of spurious correlations.

● Reweighting examples with training group labels: performs well on 
the worst group but is expensive

● JTT: performs well on the worst group and is cheaper (still uses 
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