Just Train Twice: Improving Group Robustness without Training Group Information

Online comment moderation (Borkan et al., '19; Koh et al., '20)

Input: real online commentLabel: toxicityI applaud your father.
He was a good man!toxicnon-toxic

Online comment moderation (Borkan et al., '19; Koh et al., '20)

Input: real online comment

I applaud your father.

He was a good man!

 \rightarrow

non-toxic

Label: toxicity

toxic

92.6% average test accuracy

Online comment moderation (Borkan et al., '19; Koh et al., '20)

Input: real online comment

I applaud your father. He was a good man! Label: toxicitytoxicnon-toxic

92.6% average test accuracy69.2% on non-toxic comments mentioning Black demographic (Koh et al., '20)

Online comment moderation (Borkan et al., '19; Koh et al., '20)

Input: real online comment

I applaud your father. He was a good man! Label: toxicitytoxicnon-toxic

92.6% average test accuracy69.2% on non-toxic comments mentioning Black demographic (Koh et al., '20)

I am a black woman

Online comment moderation (Borkan et al., '19; Koh et al., '20)

Input: real online comment

I applaud your father. He was a good man!

92.6% average test accuracy69.2% on non-toxic comments mentioning Black demographic (Koh et al., '20)

I am a black woman

Wildlife image classification (Wah et al., '11; Sagawa et al., '20)

Online comment moderation (Borkan et al., '19; Koh et al., '20)

Input: real online comment

I applaud your father. He was a good man!

Label: toxicity					
toxic		non-toxic			

92.6% average test accuracy
69.2% on non-toxic comments mentioning Black demographic (Koh et al., '20)

I am a black woman

Wildlife image classification (Wah et al., '11; Sagawa et al., '20)

Input: image of a bird

97.3% average test accuracy

Online comment moderation (Borkan et al., '19; Koh et al., '20)

Input: real online comment

I applaud your father. He was a good man!

Label: toxicity				
toxic		non-toxic		

92.6% average test accuracy69.2% on non-toxic comments mentioning Black demographic (Koh et al., '20)

I am a black woman

Wildlife image classification (Wah et al., '11; Sagawa et al., '20)

97.3% average test accuracy72.6% on waterbirds on land backgrounds

Online comment moderation (Borkan et al., '19; Koh et al., '20)

Input: real online comment

I applaud your father. He was a good man!

92.6% average test accuracy69.2% on non-toxic comments mentioning Black demographic (Koh et al., '20)

I am a black woman

Wildlife image classification (Wah et al., '11; Sagawa et al., '20)

97.3% average test accuracy

72.6% on waterbirds on land backgrounds

Online comment moderation (Borkan et al., '19; Koh et al., '20)

Input: real online comment

I applaud your father. He was a good man!

Label:	toxicity
toxic	non-to

92.6% average test accuracy **69.2%** on non-toxic comments mentioning Black demographic (Koh et al., '20)

I am a black woman

Standard training can **perform poorly** on worst group, especially if there are **spurious correlations**

Wildlife image classification (Wah et al., '11; Sagawa et al., '20) **Input:** image of a bird Label: bird type

97.3% average test accuracy 72.6% on waterbirds on land backgrounds

High data + spurious correlation holds

Low data + spurious correlation doesn't hold

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

Standard training: Empirical risk minimization (ERM)

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

Does not generalize ⇒ **low worst-group performance**

Standard training: Empirical risk minimization (ERM)

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

Does not generalize ⇒ **low worst-group performance**

Standard training: Empirical risk minimization (ERM)

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

Does not generalize ⇒ **low worst-group performance**

Standard training: Empirical risk minimization (ERM)

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

Does not generalize ⇒ low worst-group performance

Standard training: Empirical risk minimization (ERM)

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

Does not generalize ⇒ low worst-group performance

Standard training: Empirical risk minimization (ERM)

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

Does not generalize ⇒ low worst-group performance

Group reweighting (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton '18)

Generalizes ⇒ high worst-group performance

Standard training: Empirical risk minimization (ERM)

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

Does not generalize ⇒ **low worst-group performance**

Group reweighting (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton '18)

Group DRO (Sagawa et al., '20): Minimize worst-group loss

$$J_{ ext{gDRO}}(heta) = \max_g rac{1}{n_g} \sum_{i \mid g_i = g} \ell(x_i, y_i; heta)$$

Generalizes ⇒ high worst-group performance

Standard training: Empirical risk minimization (ERM)

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

Does not generalize ⇒ low worst-group performance

Group reweighting (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton '18)

Group DRO (Sagawa et al., '20): Minimize worst-group loss

$$J_{ ext{gDRO}}(heta) = \max_g rac{1}{n_g} \sum_{i \mid g_i = g} \ell(x_i, y_i; heta)$$

Generalizes ⇒ high worst-group performance ...but requires expensive training group annotations

Standard training: Empirical risk minimization (ERM)

$$J_{ ext{ERM}}(heta) = rac{1}{n} \sum_{i=1}^n \ell(x_i,y_i; heta)$$

Does not generalize ⇒ low worst-group performance

Goal: high worst-group performance without training group annotations

Group reweighting (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton '18)

Group DRO (Sagawa et al., '20): Minimize worst-group loss

$$J_{ ext{gDRO}}(heta) = \max_g rac{1}{n_g} \sum_{i \mid g_i = g} \ell(x_i, y_i; heta)$$

Generalizes ⇒ high worst-group performance ...but requires expensive training group annotations

Training group annotations

Training group annotations

Training group annotations

Input

No training

group annotations

Group not known

Training group annotations

No training group annotations (our setting) waterbird Input Label Group not known

Lam & Zhou, '15; Ren et al., '18; Oren et al., '19; Sohoni et al., '20; Kim et al., '19; Shu et al., '19; Pezeshki et al., '20.

Training group annotations

Input

No training group annotations (our setting)

Input

Group not known

on land

waterbird

Input

Group

waterbird

Input

JTT: Just Train Twice

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18)

JTT: Just Train Twice

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18) Observation 2: ERM performs poorly on worst group

JTT: Just Train Twice

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18) **Observation 2:** ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples
Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18) **Observation 2:** ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18) **Observation 2:** ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples

1. Train *identification model* $f_{
m id}(x)$ via ERM

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18) Observation 2: ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples

1. Train *identification model* $f_{
m id}(x)$ via ERM

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18) **Observation 2:** ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples **1.** Train *identification model* $f_{\rm id}(x)$ via ERM

2. Compute error set of misclassified training examples

$$E = \{(x,y) ext{ s. t. } f_{ ext{id}}(x)
eq y\}$$

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18) **Observation 2:** ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples **1.** Train *identification model* $f_{\rm id}(x)$ via ERM

2. Compute error set of misclassified training examples

 $E = \{(x,y) ext{ s. t. } f_{ ext{id}}(x)
eq y\}$

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18)

Observation 2: ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples **1.** Train *identification model* $f_{\rm id}(x)$ via ERM

2. Compute error set of misclassified training examples

 $E = \{(x,y) ext{ s.t. } f_{\mathrm{id}}(x)
eq y\}$

Stage 2: Upweight identified examples

3. Upsample error set examples

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18) **Observation 2:** ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples **1.** Train *identification model* $f_{\rm id}(x)$ via ERM

2. Compute error set of misclassified training examples

 $E = \{(x,y) ext{ s. t. } f_{ ext{id}}(x)
eq y\}$

Stage 2: Upweight identified examples

3. *Upsample* error set examples

4. Train *final model* $f_{\mathrm{final}}(x)$ via ERM on the upsampled data

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18)

Observation 2: ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples **1.** Train *identification model* $f_{id}(x)$ via ERM

2. Compute error set of misclassified training examples

 $E = \{(x,y) ext{ s.t. } f_{\mathrm{id}}(x)
eq y\}$

Stage 2: Upweight identified examples

3. *Upsample* error set examples

4. Train final model $f_{\mathrm{final}}(x)$ via ERM on the upsampled data

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18) **Observation 2:** ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples **1.** Train *identification model* $f_{\rm id}(x)$ via ERM

2. Compute error set of misclassified training examples

$$E = \{(x,y) ext{ s. t. } f_{ ext{id}}(x)
eq y\}$$

Stage 2: Upweight identified examples

3. Upsample error set examples

4. Train final model $f_{\mathrm{final}}(x)$ via ERM on the upsampled data

+ **Simple** ("just train twice!")

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18) **Observation 2:** ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples **1.** Train *identification model* $f_{\rm id}(x)$ via ERM

2. Compute error set of misclassified training examples

$$E = \{(x,y) ext{ s. t. } f_{ ext{id}}(x)
eq y\}$$

Stage 2: Upweight identified examples

3. Upsample error set examples

- **4.** Train final model $f_{\mathrm{final}}(x)$ via ERM on the upsampled data
- + **Simple** ("just train twice!")
- + Does not require training group labels...

Observation 1: Upweighting worst group yields high worst-group performance (Shimodaira '00; Sagawa et al., '20; Byrd & Lipton, '18)

Observation 2: ERM performs poorly on worst group

Stage 1: Automatically identify worst-group training examples **1.** Train *identification model* $f_{\rm id}(x)$ via ERM

2. Compute error set of misclassified training examples

$$E = \{(x,y) ext{ s. t. } f_{ ext{id}}(x)
eq y\}$$

Stage 2: Upweight identified examples

3. Upsample error set examples

4. Train final model $f_{\mathrm{final}}(x)$ via ERM on the upsampled data

- + **Simple** ("just train twice!")
- + Does not require training group labels... but uses validation group labels for tuning

MultiNLI
(Williams et al., '15; Sagawa et al., '20)\$1: Read for Slate's take on Jackson's findings.
\$2: Slate had an opinion on Jackson's findings.

y: entailment a: no negation\$1: Vrenna and I both fought him and he nearly
took us.
\$2: Neither Vrenna nor myself have ever fought
him.

y: contradiction a: has negation

(Williams et al., '15; Sagawa et al., '20

S1: Read for Slate's take on Jackson's findings.S2: Slate had an opinion on Jackson's findings.

y: entailment a: no n

S1: Vrenna and I both fought him and he nearly took us.

S2: Neither Vrenna nor myself have ever fought him.

y: contradiction a: has negation

CelebA (Liu et al., '15; Sagawa et al., '20)

y: not blond a: male

CivilComments

(Borkan et al., '19; Koh et al., '20)

Maybe you should learn to write a coherent sentence so we can understand WTF your point is.

y: toxic

a: none

I applaud your father. He was a good man! We need more like him.

y: non-toxic a: male

Approaches without training group information

• Standard training (ERM)

Approaches without training group information

- Standard training (ERM)
- CVaR DRO (Levy et al., '18)

Approaches without training group information

- Standard training (ERM)
- CVaR DRO (Levy et al., '18)
- Learning from Failures (LfF) (Nam et al., '20)

Approaches without training group information

- Standard training (ERM)
- CVaR DRO (Levy et al., '18)
- Learning from Failures (LfF) (Nam et al., '20)

Others in this category: Lam & Zhou, '15; Ren et al., '18; Oren et al., '19; Sohoni et al., '20; Kim et al., '19; Shu et al., '19; Pezeshki et al., '20.

Approaches with training group information

• Group DRO (Sagawa et al., '20)

Others in this category: Shimodaira '00; Byrd & Lipton '19; Cao et al., '19; Mohri et al., '19; Zhang et al., '20; Goel et al., '20; Sagawa et al. '20; Cao et al., '20

Approaches without training group information

- Standard training (ERM)
- CVaR DRO (Levy et al., '18)
- Learning from Failures (LfF) (Nam et al., '20)

Others in this category: Lam & Zhou, '15; Ren et al., '18; Oren et al., '19; Sohoni et al., '20; Kim et al., '19; Shu et al., '19; Pezeshki et al., '20.

Approaches with training group information

• Group DRO (Sagawa et al., '20)

Others in this category: Shimodaira '00; Byrd & Lipton '19; Cao et al., '19; Mohri et al., '19; Zhang et al., '20; Goel et al., '20; Sagawa et al. '20; Cao et al., '20

All approaches tuned based on worst-group performance on the validation set (requires group information)

	Training	Waterbirds		CelebA		MultiNLI		CivilComments	
Method	group labels?	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.
ERM	No	97.3%	72.6%	95.6%	47.2%	82.4%	67.9%	92.6%	59.4%
CVaR DRO	No	96.5%	69.5%	82.4%	64.4%	82.0%	68.0%	92.5%	60.5%
LfF	No	97.5%	75.2%	86.0%	70.6%	80.8%	70.2%	92.5%	58.8%
JTT	No	93.6%	86.0%	88.0%	81.1%	80.4%	72.3%	91.1%	69.3%
Group DRO						81.4%			

	Training	Waterbirds		CelebA		MultiNLI		CivilComments	
Method	group labels?	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.
ERM	No	97.3%	72.6%	95.6%	47.2%	82.4%	67.9%	92.6%	59.4%
CVaR DRO	No	96.5%	69.5%	82.4%	64.4%	82.0%	68.0%	92.5%	60.5%
LfF	No	97.5%	75.2%	86.0%	70.6%	80.8%	70.2%	92.5%	58.8%
JTT	No	93.6%	86.0%	88.0%	81.1%	80.4%	72.3%	91.1%	69.3%
Group DRO						81.4%			

9% average improvement over approaches without training group information

	Training	Waterbirds		CelebA		MultiNLI		CivilComments	
Method	group labels?	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.
ERM	No	97.3%	72.6%	95.6%	47.2%	82.4%	67.9%	92.6%	59.4%
CVaR DRO	No			82.4%					
LfF	No								
JTT	No	93.6%	86.0%	88.0%	81.1%	80.4%	72.3%	91.1%	69.3%
Group DRO	Yes	93.5%	91.4%	92.9%	88.9%	81.4%	77.7%	88.9%	69.9%

9% average improvement over approaches without training group information

	Training	Waterbirds		CelebA		MultiNLI		CivilComments	
Method	group labels?	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.	Avg Acc.	Worst-Group Acc.
ERM	No	97.3%	72.6%	95.6%	47.2%	82.4%	67.9%	92.6%	59.4%
CVaR DRO	No			82.4%					
LfF	No								
JTT	No	93.6%	86.0%	88.0%	81.1%	80.4%	72.3%	91.1%	69.3%
Group DRO	Yes	93.5%	91.4%	92.9%	88.9%	81.4%	77.7%	88.9%	69.9%

9% average improvement over approaches without training group information

Closes 73% of the gap between standard training and using training group info (group DRO)

-

Dataset	Worst-group Recall	Worst-group Precision	Worst-group Empirical Rate
Waterbirds	87.5%	19.1%	1.2%
CelebA	94.7%	9.4%	0.9%
MultiNLI	67.1%	2.2%	1.0%
CivilComments	96.9%	7.8%	0.9%

Dataset	Worst-group Recall	Worst-group Precision	Worst-group Empirical Rate
Waterbirds	87.5%	19.1%	1.2%
CelebA	94.7%	9.4%	0.9%
MultiNLI	67.1%	2.2%	1.0%
CivilComments	96.9%	7.8%	0.9%

_ _ _ _ _ _ _ ,

Dataset	Worst-group Recall	Worst-group Precision	Worst-group Empirical Rate
Waterbirds	87.5%	19.1%	1.2%
CelebA	94.7%	9.4%	0.9%
MultiNLI	67.1%	2.2%	1.0%
CivilComments	96.9%	7.8%	0.9%

. _ _ _ _ _ .

JTT automatically identifies a large fraction of the worst-group examples

Dataset	Worst-group Recall	Worst-group Precision	Worst-group Empirical Rate
Waterbirds	87.5%	19.1%	1.2%
CelebA	94.7%	9.4%	0.9%
MultiNLI	67.1%	2.2%	1.0%
CivilComments	96.9%	7.8%	0.9%

JTT automatically identifies a large fraction of the worst-group examples

Dataset	Worst-group Recall	Worst-group Precision	Worst-group Empirical Rate
Waterbirds	87.5%	19.1%	1.2%
CelebA	94.7%	9.4%	0.9%
MultiNLI	67.1%	2.2%	1.0%
CivilComments	96.9%	7.8%	0.9%

JTT automatically identifies a large fraction of the worst-group examples

Worst-group examples occur in the error set at a much higher rate than in the training data

Dataset	Worst-group Recall	Worst-group Precision	Worst-group Empirical Rate
Waterbirds	87.5%	19.1%	1.2%
CelebA	94.7%	9.4%	0.9%
MultiNLI	67.1%	2.2%	1.0%
CivilComments	96.9%	7.8%	0.9%

JTT automatically identifies a large fraction of the worst-group examples

Worst-group examples occur in the error set at a much higher rate than in the training data

⇒ JTT achieves high worst-group accuracy

Wate	erbirds		CelebA			
Group	Enrichment	ERM test acc.	Group	Enrichment	ERM test acc.	
land background, waterbird	15.92x	72.6%	blond male	10.44x	47.2%	
water background, <mark>landbird</mark>	6.97x	73.3%	blond female	5.42x	89.1%	
water background, waterbird	2.40x	96.3%	non-blond male	0.32x	99.3%	
land background, landbird	0.02x	99.3%	non-blond <mark>female</mark>	0.01x	95.1%	

Enrichment: how much more frequently a group appears in the error set than in the training data

enrichment = $\frac{\text{precision}}{\text{training rate}}$

Wate	Waterbirds			CelebA			
Group	Enrichment	ERM test acc.	Group	Enrichment	ERM test acc.		
land background, waterbird	15.92x	72.6%	blond male	10.44x	47.2%		
water background, <mark>landbird</mark>	6.97x	73.3%	blond female	5.42x	89.1%		
water background, waterbird	2.40x	96.3%	non-blond male	0.32x	99.3%		
land background, landbird	0.02x	99.3%	non-blond <mark>female</mark>	0.01x	95.1%		

Enrichment: how much more frequently a group appears in the error set than in the training data

enrichment = $\frac{\text{precision}}{\text{training rate}}$

Groups with worse performance appear in the error set at a higher rate

Waterbirds			Ce	CelebA		
Group	Enrichment	ERM test acc.	Group	Enrichment	ERM test acc.	
land background, waterbird	15.92x	72.6%	blond male	10.44x	47.2%	
water background, landbird	6.97x	73.3%	blond female	5.42x	89.1%	
water background, waterbird	2.40x	96.3%	non-blond male	0.32x	99.3%	
land background, landbird	0.02x	99.3%	non-blond <mark>female</mark>	0.01x	95.1%	

Enrichment: how much more frequently a group appears in the error set than in the training data

enrichment = $\frac{\text{precision}}{\text{training rate}}$

Groups with worse performance appear in the error set at a higher rate

Group	Enrichment	ERM test acc.	
land background, waterbird	15.92x	72.6%	
water background, <mark>landbird</mark>	6.97x	73.3%	
water background, waterbird	2.40x	96.3%	
land background, landbird	0.02x	99.3%	

Group	Enrichment ERM test acc	
land background, waterbird	15.92x	72.6%
water background, landbird	6.97x	73.3%
water background, waterbird	2.40x	96.3%
land background, landbird	0.02x	99.3%

Even examples from groups where the *spurious correlation holds* can be helpful to upweight

Experiments: Other Groups in Error Set
Experiments: Other Groups in Error Set

Group	Enrichment	ERM test acc.
land background, waterbird	15.92x	72.6%
water background, <mark>landbird</mark>	6.97x	73.3%
water background, waterbird	2.40x	96.3%
land background, landbird	0.02x	99.3%

Even examples from groups where the spurious correlation holds can be helpful to upweight

• Standard training frequently **performs poorly** on the *worst group*, especially in the presence of **spurious correlations**.

- Standard training frequently **performs poorly** on the *worst group*, especially in the presence of **spurious correlations**.
- Reweighting examples with training group labels: **performs well** on the worst group but is **expensive**

- Standard training frequently **performs poorly** on the *worst group*, especially in the presence of **spurious correlations**.
- Reweighting examples with training group labels: performs well on the worst group but is expensive
- JTT: performs well on the worst group and is cheaper (still uses validation group labels!)

- Standard training frequently **performs poorly** on the *worst group*, especially in the presence of **spurious correlations**.
- Reweighting examples with training group labels: **performs well** on the worst group but is **expensive**
- JTT: performs well on the worst group and is cheaper (still uses validation group labels!)

Code: Code:

