Bilinear Classes: A Structural Framework for Provable Generalization in RL

Talk by: Gaurav Mahajan (UCSD)

Joint work with:

Simon Du

Shachar Lovett

Sham Kakade

Wen Sun

Jason Lee

Ruosong Wang

Progress of RL in practice

- Lots of recent empirical success.
- Tackling large state spaces is a central challenge in RL.
- Growing theoretical work on assumptions which allow dealing with large state spaces.
- Can we unify these assumptions?

This Talk

We aim to understand natural sufficient conditions which capture the learnability in a general class of RL models.

- Part I: Generalization in Reinforcement Learning

Connections to Supervised Learning
Various model assumptions for generalization in RL

- Part II: Unifying sufficient conditions Is there a common theme to prior assumptions?

Markov Decision Processes: A Framework for RL

- A policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$
- Mario: Always go right!!
- Execute π to obtain a H -step trajectory $s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots, s_{H-1}, a_{H-1}, r_{H-1}$
- Chess: $H \approx 80$, Go: $H=150$, Dota 2: $H \approx 20000$

Goal

Learn a policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$ which maximizes $\mathbb{E}_{\pi}\left[\sum_{t=0}^{H-1} r_{t}\right]$.

Part 0: Generalization from Supervised Learning to Reinforcement Learning

Generalization in Supervised Learning

Generalization is possible in the IID supervised learning setting!!

To get ϵ-close to best in hypothesis class \mathcal{F}, we need $\#$ of samples that is:

- Finite Hypothesis class: $O\left(\log (|\mathcal{F}|) / \epsilon^{2}\right)$.
- Infinite hypothesis classes: $O\left(\operatorname{VCdim}(\mathcal{F}) / \epsilon^{2}\right)$.
- Linear Regression in d dimensions: $O\left(d / \epsilon^{2}\right)$

The key idea in SL: uniform convergence / data-reuse.
With a training set, we can simultaneously evaluate the loss of all hypotheses in our class!

Sample Efficient RL in the Tabular Case (no generalization here)

Can we find an ϵ-opt policy with $\operatorname{poly}(\mathcal{S}, \mathcal{A}, H, 1 / \epsilon)$ samples?

Theorem (Kearns \& Singh '98; . . .)

In the episodic setting, poly $(\mathcal{S}, \mathcal{A}, H, 1 / \epsilon)$ samples suffice to find an ϵ-opt policy.

- Key Idea: optimism + dynamic programming
- Add bonus for states which are not explored enough.

Provable Generalization in RL: Attempt I

Q1: Can we find an ϵ-opt policy with no $|\mathcal{S}|$ dependence?

$$
\text { Chess has }|S| \approx 10^{123}
$$

$$
\text { Dota2 has } S \subset \mathbb{R}^{16000!!}
$$

- How can we reuse data to estimate the value of all policies in a policy class \mathcal{F} ? Idea: Trajectory tree algorithm acts randomly for length H episodes and then uses importance sampling to evaluate every $f \in \mathcal{F}$.

Theorem (Kearns, Mansour, \& Ng '00)

To find an ϵ-best in class policy, the trajectory tree algo uses $O\left(|\mathcal{A}|^{H} \log (|\mathcal{F}|) / \epsilon^{2}\right)$.

- Can we avoid A^{H} dependence to find an ϵ-best-in-class policy?

Without further assumptions, NO!!
Proof: Consider a binary tree with 2^{H} policies and a sparse reward at a leaf node.

Provable Generalization in RL: Attempt II

Q2: Can we find an ϵ-opt policy with no $|\mathcal{S}|,|\mathcal{A}|$ dependence and $\operatorname{poly}(H, 1 / \epsilon$, "complexity measure")?

- With various stronger assumptions, YES!
- Linear Bellman Completion: [Munos et al., '05, Zanette et al., '19]
- Linear MDPs: [Wang \& Yang'18]; [Jin et al., '19] (the transition matrix is low rank)
- Linear Quadratic Regulators (LQR): standard control theory model
- FLAMBE / Feature Selection: [Agarwal et al., '20]
- Linear Mixture MDPs: [Modi et al., '20, Ayoub et al., '20]
- Block MDPs [Du et al., '19]
- Factored MDPs [Sun et al., '19]
- Kernelized Nonlinear Regulator [Kakade et al., '20]
- And more...

Part II: What are sufficient conditions for efficient RL?

Is there a common theme to prior settings?

Special case I: Linear bandits ($H=1$ RL problem) [Abe and Long, 1999]

- [Assumption 1] One step RL $(H=1)$: single state: s_{0}, large set of actions: $a \in \mathcal{A}$
- [Assumption 2] Linear reward: There exists unknown vector $w^{\star} \in \mathbb{R}^{d}$ and known feature map $\phi: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^{d}$

$$
\mathbb{E}\left[r\left(s_{0}, a\right)\right]=\left\langle w^{\star}, \phi\left(s_{0}, a\right)\right\rangle
$$

Polynomial sample complexity is possible here [Auer et al. 2002; Dani et al. 2008]

Special case I: Important structural property

- Linear "value-based" Hypothesis class \mathcal{F} :
set of all (bounded) linear vectors $\mathcal{F}=\left\{w \in \mathbb{R}^{d}\right\}$
Define for each hypothesis $w \in \mathcal{F}, Q_{w}\left(s_{0}, a\right)=\left\langle w, \phi\left(s_{0}, a\right)\right\rangle$, (greedy) value $V_{w}\left(s_{0}\right)$ and (greedy) policy $\pi_{w}\left(s_{0}\right)$

An important structural property:

- Bilinear Regret: for all $w \in \mathcal{F}$, on policy difference between claimed reward $\mathbb{E}\left[Q_{w}\right]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$
\begin{aligned}
\mathbb{E}_{\pi_{w}}\left[Q_{w}\left(s_{0}, a\right)-r\right] & =\mathbb{E}_{\pi_{w}}\left[\left\langle w, \phi\left(s_{0}, a\right)\right\rangle-\left\langle w^{\star}, \phi\left(s_{0}, a\right)\right\rangle\right] \\
& =\left\langle w-w^{\star}, \mathbb{E}_{\pi_{w}}\left[\phi\left(s_{0}, a\right)\right]\right\rangle
\end{aligned}
$$

- Data reuse: There exists loss function $\ell\left(s, a, r, w^{\prime}\right)=Q_{w^{\prime}}(s, a)-r$ such that the bilinear form for any hypothesis w^{\prime} is estimable when playing π_{w}

$$
\mathbb{E}_{\pi_{w}}\left[\ell\left(s_{0}, a, r, w^{\prime}\right)\right]=\left\langle w^{\prime}-w^{\star}, \mathbb{E}_{\pi_{w}}\left[\phi\left(s_{0}, a\right)\right]\right\rangle
$$

Essentially, we can use data collected under π_{w} to estimate the bilinear form for w^{\prime}

Special case II: Linear Bellman complete classes [Munos, 2005]

- [Assumption 1] Linear Q^{\star} : There exists unknown $w^{\star} \in \mathbb{R}^{d}$ and known features $\phi: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^{d}$ such that

$$
Q^{\star}(s, a)=\langle w, \phi(s, a)\rangle
$$

- [Assumption 2] Completeness: Let \mathcal{F} be the linear "value-based" hypothesis class. For every $w \in \mathcal{F}$, there exists $\mathcal{T}(w) \in \mathcal{F}$ such that

$$
\langle T(w), \phi(s, a)\rangle=r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)}\left[\max _{a^{\prime}} Q_{w}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Polynomial sample complexity is possible here [Zanette et al. 2020])

Special case II: Important structural property

Analogous structural property holds here:

- Bilinear Regret: on policy difference between claimed reward $\mathbb{E}\left[Q_{w}-V_{w}\right]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$
\begin{aligned}
& \mathbb{E}_{\pi_{w}}\left[Q_{w}\left(s_{h}, a_{h}\right)-r\left(s_{h}, a_{h}\right)-V_{w}\left(s_{h+1}\right)\right] \\
& =\mathbb{E}_{\pi_{w}}[\langle w, \phi(s, a)\rangle-\langle T(w), \phi(s, a)\rangle] \\
& =\left\langle w-T(w), \mathbb{E}_{\pi_{w}}[\phi(s, a)]\right\rangle \\
& =\left\langle w-T(w)-\left(w^{\star}-T\left(w^{\star}\right)\right), \mathbb{E}_{\pi_{w}}[\phi(s, a)]\right\rangle
\end{aligned}
$$

- Data reuse: There exists loss function $\ell\left(\cdot, w^{\prime}\right)$ such that the bilinear form for any hypothesis w^{\prime} is estimable when playing π_{w}

$$
\mathbb{E}_{\pi_{w}}\left[\ell\left(s_{h}, a_{h}, r_{h}, s_{h+1}, w^{\prime}\right)\right]=\left\langle w^{\prime}-T\left(w^{\prime}\right)-\left(w^{\star}-T\left(w^{\star}\right)\right), \mathbb{E}_{\pi_{w}}[\phi(s, a)]\right\rangle
$$

Here the loss function is

$$
\ell\left(s_{h}, a_{h}, r_{h}, s_{h+1}, w^{\prime}\right)=Q_{w^{\prime}}\left(s_{h}, a_{h}\right)-r_{h}-V_{w^{\prime}}\left(s_{h+1}\right)
$$

Special case III: Linear Mixture Model classes [Modi et al., 2020b]

- [Assumption 1] Linear dynamics and rewards: There exists unknown $w^{\star} \in \mathbb{R}^{d}$ and known features $\phi: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}^{d}, \psi: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^{d}$ such that

$$
P\left(s^{\prime} \mid s, a\right)=\left\langle w^{\star}, \phi\left(s, a, s^{\prime}\right)\right\rangle \quad \text { and } \quad \mathbb{E}[r(s, a)]=\left\langle w^{\star}, \psi(s, a)\right\rangle
$$

Polynomial sample complexity is possible here [Modi et al., 2020; Ayoub et al., 2020])

Special case III: Important structural property

- Linear "model-based" Hypothesis class \mathcal{F} :
set of all (bounded) linear vectors $\mathcal{F}=\left\{w \in \mathbb{R}^{d}\right\}$
Define for each hypothesis $w \in \mathcal{F}, P_{w}\left(s^{\prime} \mid s, a\right)=\left\langle w, \phi\left(s, a, s^{\prime}\right)\right\rangle$, $Q_{w}(s, a), V_{w}(s)$ and $\pi_{w}(s)$ as the optimal functions for model P_{w}

Analogous structural property holds here:

- Bilinear Regret: on policy difference between claimed reward $\mathbb{E}\left[Q_{w}-V_{w}\right]$ and true reward $\mathbb{E}[r]$ satisfies a bilinear form

$$
\begin{aligned}
& \mathbb{E}_{\pi_{w}}\left[Q_{w}\left(s_{h}, a_{h}\right)-r\left(s_{h}, a_{h}\right)-V_{w}\left(s_{h+1}\right)\right] \\
& =\left\langle w-w^{\star}, \quad \mathbb{E}_{\pi_{w}}\left[\psi\left(s_{h}, a_{h}\right)+\sum_{\bar{s} \in \mathcal{S}} \phi\left(s_{h}, a_{h}, \bar{s}\right) V_{w}(\bar{s})\right]\right\rangle
\end{aligned}
$$

- Data reuse: There exists loss function $\ell_{w}(\cdot)$ such that the bilinear form for any hypothesis w^{\prime} is estimable when playing π_{w}

$$
\mathbb{E}_{\pi_{w}}\left[\ell\left(s_{h}, a_{h}, r_{h}, s_{h+1}, w^{\prime}\right)\right]=\left\langle w^{\prime}-w^{\star}, \mathbb{E}_{\pi_{w}}\left[\sum_{\bar{s} \in \mathcal{S}} \phi\left(s_{h}, a_{h}, \bar{s}\right) V_{w}(\bar{s})\right]\right\rangle
$$

Here the loss function is

$$
\ell_{w}\left(s_{h}, a_{h}, r_{h}, s_{h+1}, w^{\prime}\right)=w_{h}^{\prime \top}\left(\psi\left(s_{h}, a_{h}\right)+\sum_{\bar{s} \in \mathcal{S}} \phi\left(s_{h}, a_{h}, \bar{s}\right) V_{w}(\bar{s})\right)-V_{w}\left(s_{h+1}\right)-r_{h}
$$

BiLinear Classes: structural properties to enable generalization in RL

- Hypothesis class: $\{f \in \mathcal{F}\}$
with associated state action value $Q_{f}(s, a)$, (greedy) value $V_{f}(s)$ and (greedy) policy π_{f}
- can be model-based or value-based class.

Definition

A (\mathcal{F}, ℓ) forms an (implicit) Bilinear class if there exists $w_{h}: \mathcal{F} \rightarrow \mathbb{R}^{d}$ and $\Phi_{h}: \mathcal{F} \rightarrow \mathbb{R}^{d}$ for all timesteps $h \in[H]$:

- Bilinear regret: on-policy difference between claimed reward and true reward satisfies a bilinear form:

$$
\left|E_{\pi_{f}}\left[Q_{f}\left(s_{h}, a_{h}\right)-r\left(s_{h}, a_{h}\right)-V_{f}\left(s_{h+1}\right)\right]\right| \leq\left|\left\langle w_{h}(f)-w_{h}\left(f^{\star}\right), \Phi_{h}(f)\right\rangle\right|
$$

- Data reuse: There exists loss function $\ell_{f}\left(s_{h}, a_{h}, r_{h}, s_{h+1}, g\right)$ such that the bilinear form for any hypothesis g is estimable when playing π_{f}

$$
\left|E_{\pi_{f}}\left[\ell_{f}\left(r_{h}, s_{h}, a_{h}, s_{h+1}, g\right)\right]\right|=\left|\left\langle w_{h}(g)-w_{h}\left(f^{\star}\right), \Phi_{h}(f)\right\rangle\right|
$$

Theorem 1: Structural Commonalities and Bilinear Classes

Theorem (Du, Kakade, Lee, Lovett, M., Sun, Wang '21)

The following models are bilinear classes for some discrepancy function $\ell(\cdot)$

- Linear Bellman Completion: [Munos et al. '05, Zanette et al. '19]
- Linear MDPs: [Wang \& Yang '18]; [Jin et al.'19] (the transition matrix is low rank)
- Linear Quadratic Regulators (LQR): standard control theory model
- Generalized Linear Bellman Completion: [Wang et al. '2019]
- FLAMBE / Feature Selection: [Agarwal et al. '20]
- Linear Mixture MDPs: [Modi et al. '20, Ayoub et al. '20]
- Block MDPs [Du et al. '19]
- Factored MDPs [Sun et al. '19]
- Kernelized Nonlinear Regulator [Kakade et al. '20]
- And more. . .
- (almost) all "named" models (with provable generalization) are bilinear classes
two exceptions: a) deterministic linear Q^{\star} [Wen \& Van Roy, '13; Du, Lee, M., Wang, '20]
b) Q^{\star} state-action aggregation [Dong et al. '20]
- Bilinear classes generalize the: Bellman rank [Jiang et al. '17]; Witness rank [Wen et al. '19]
- The framework easily leads to new models (see paper).

The Algorithm: BiLin-UCB

Algorithm 1: BiLin-UCB

1 Input number of iterations T, estimator function ℓ, batch size m, confidence radius R
2 Initialize cumulative discrepancy function $\sigma^{2}(\cdot)=0$
3 for iteration $t=0,1, \ldots, T-1$ do
4 Find the optimistic $f_{t} \in \mathcal{F}$:

$$
f_{t}:=\underset{f}{\arg \max } V_{f}\left(s_{0}\right) \quad \text { subject to } \sigma^{2}(f) \leq R
$$

Sample m trajectories using $\pi_{f_{t}}$ and create a batch dataset of size $m H$:

$$
S=\left\{\left(r_{h}, s_{h}, a_{h}, s_{h+1}\right) \in \text { trajectories }\right\}
$$

Update the cumulative discrepancy function $\sigma^{2}(\cdot)$

$$
\sigma^{2}(\cdot) \leftarrow \sigma^{2}(\cdot)+\left(\frac{1}{|S|} \sum_{o \in S} \ell(o, \cdot)\right)^{2}
$$

7 return: the best policy π_{f} found

Theorem 2: Generalization in RL

Theorem (Du, Kakade, Lee, Lovett, M., Sun, Wang '21)

Assume (\mathcal{F}, ℓ) is a bilinear class with $\Phi_{h}(f) \in \mathbb{R}^{d}$, bounded ℓ and the class is realizable, i.e. $Q^{\star} \in \mathcal{F}$. Using $\frac{d^{2}}{\epsilon^{2}} \cdot \operatorname{poly}(H) \cdot \log (|\mathcal{F}|) \cdot \log (1 / \delta)$ trajectories, the BiLin-UCB algorithm returns an ϵ-opt policy (with prob. $1-\delta$).

- The proof is "elementary" using the elliptical potential function.[Dani et al., '08]
- Extends to infinite dimensional problems using max info gain γ_{T} [Auer et al., '02; Srinivas et al., '10; Abbasi-Yadkori et al., '11]

Proof intuition

- The proof follows from this lemma about existence of high quality policy.

Lemma (Existence of high quality policy)

Suppose we run the algorithm for $T \approx d$ iterations. Then, there exists $t \in[T]$ such that the following is true for hypothesis f_{t} :

Proof of main lemma

- Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all iterations t.

$$
V^{\star}-V^{\pi_{f_{t}}}\left(s_{0}\right) \leq \sum_{h=0}^{H-1}\left|\left\langle w_{h}\left(f_{t}\right)-w_{h}\left(f^{\star}\right), \Phi_{h}\left(f_{t}\right)\right\rangle\right|
$$

- Our goal then is to show existence of iteration $t \in[T]$ such that

$$
\sum_{h=0}^{H-1}\left|\left\langle w_{h}\left(f_{t}\right)-w_{h}\left(f^{\star}\right), \Phi_{h}\left(f_{t}\right)\right\rangle\right| \quad \text { is small }
$$

- To that end, we will show existence of iteration $t \in[T]$ such that for $\Sigma_{0 ; h}=\lambda I$ and $\Sigma_{t ; h}=\Sigma_{0 ; h}+\sum_{i=0}^{t-1} \Phi_{h}\left(f_{i}\right) \Phi_{h}\left(f_{i}\right)^{\top}$, the following is true

$$
\left\|w_{h}\left(f_{t}\right)-w_{h}\left(f^{\star}\right)\right\|_{\Sigma_{t ; h}} \quad\left\|\Phi_{h}\left(f_{t}\right)\right\|_{\Sigma_{t ; h}^{-1}} \quad \text { is small for all } h \in[H]
$$

Proof of main lemma

- To that end, we will show existence of iteration $t \in[T]$ such that for $\Sigma_{0 ; h}=\lambda I$ and $\Sigma_{t ; h}=\Sigma_{0 ; h}+\sum_{i=0}^{t-1} \Phi_{h}\left(f_{i}\right) \Phi_{h}\left(f_{i}\right)^{\top}$, the following is true

$$
\left\|w_{h}\left(f_{t}\right)-w_{h}\left(f^{\star}\right)\right\|_{\Sigma_{t ; h}} \quad\left\|\Phi_{h}\left(f_{t}\right)\right\|_{\Sigma_{t ; h}^{-1}} \quad \text { is small for all } h \in[H]
$$

- From our optimization constraint, we get that for all time t (we can set R small because of uniform convergence and Data reuse assumption)

$$
\left\|w_{h}\left(f_{t}\right)-w_{h}\left(f^{\star}\right)\right\|_{\Sigma_{t ; h}} \leq R=2 \sqrt{d} \cdot \underbrace{H \sqrt{\frac{\log (|\mathcal{F}|)}{m}}}_{\text {SL generalization error }} \text { for all } h \in[H]
$$

- From Elliptical Potential Lemma, there exists $t \in[T]$ (for $T \approx d$) such that

$$
\left\|\Phi_{h}\left(f_{t}\right)\right\|_{\Sigma_{t ; h}^{-1}}^{2}=O(1) \quad \text { for all } h \in[H]
$$

Note that for infinite dimensional spaces, we can use max info gain instead.

Thanks!

- A generalization theory in RL is possible!
- linear bandit theory \rightarrow RL theory (bilinear classes) is rich.
- covers known cases and new cases
- leads to simple algorithm and proof

Simon Du

Shachar Lovett

Sham Kakade

Wen Sun

Jason Lee

