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Progress of RL in practice

Lots of recent empirical success.

Tackling large state spaces is a central challenge in RL.

Growing theoretical work on assumptions which allow dealing with large state spaces.
Can we unify these assumptions?
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This Talk

We aim to understand natural sufficient conditions which capture the learnability in a general
class of RL models.

Part I: Generalization in Reinforcement Learning
Connections to Supervised Learning
Various model assumptions for generalization in RL

Part II: Unifying sufficient conditions
Is there a common theme to prior assumptions?
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Markov Decision Processes: A Framework for RL

A policy π : S → A
Mario: Always go right!!

Execute π to obtain a H-step trajectory s0, a0, r0, s1, a1, r1, . . . , sH−1, aH−1, rH−1

Chess: H ≈ 80, Go: H = 150, Dota 2: H ≈ 20000

Goal

Learn a policy π : S → A which maximizes Eπ
[∑H−1

t=0 rt
]
.
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Part 0: Generalization from Supervised Learning to Reinforcement
Learning
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Generalization in Supervised Learning

Generalization is possible in the IID supervised learning setting!!

To get ε-close to best in hypothesis class F , we need # of samples that is:

Finite Hypothesis class: O(log(|F|)/ε2).

Infinite hypothesis classes: O(VCdim(F)/ε2).

Linear Regression in d dimensions: O(d/ε2)

The key idea in SL: uniform convergence / data-reuse.
With a training set, we can simultaneously evaluate the loss of all hypotheses in our class!
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Sample Efficient RL in the Tabular Case (no generalization here)

Can we find an ε-opt policy with poly(S,A, H, 1/ε) samples?

Theorem (Kearns & Singh ’98; . . .)

In the episodic setting, poly(S,A, H, 1/ε) samples suffice to find an ε-opt policy.

Key Idea: optimism + dynamic programming

Add bonus for states which are not explored enough.
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Provable Generalization in RL: Attempt I

Q1: Can we find an ε-opt policy with no |S| dependence?

Chess has |S| ≈ 10123

Dota2 has S ⊂ R16000!!

How can we reuse data to estimate the value of all policies in a policy class F?
Idea: Trajectory tree algorithm acts randomly for length H episodes and then uses
importance sampling to evaluate every f ∈ F .

Theorem (Kearns, Mansour, & Ng ’00)

To find an ε-best in class policy, the trajectory tree algo uses O(|A|H log(|F|)/ε2).

Can we avoid AH dependence to find an ε-best-in-class policy?
Without further assumptions, NO!!
Proof: Consider a binary tree with 2H policies and a sparse reward at a leaf node.
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Provable Generalization in RL: Attempt II

Q2: Can we find an ε-opt policy with no |S|, |A| dependence
and poly(H, 1/ε, “complexity measure”)?

With various stronger assumptions, YES!

Linear Bellman Completion: [Munos et al., ’05, Zanette et al., ’19]

Linear MDPs: [Wang & Yang’18]; [Jin et al., ’19] (the transition matrix is low rank)
Linear Quadratic Regulators (LQR): standard control theory model

FLAMBE / Feature Selection: [Agarwal et al., ’20]
Linear Mixture MDPs: [Modi et al., ’20, Ayoub et al., ’20]
Block MDPs [Du et al., ’19]
Factored MDPs [Sun et al., ’19]
Kernelized Nonlinear Regulator [Kakade et al., ’20]
And more. . .
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Part II: What are sufficient conditions for efficient RL?

Is there a common theme to prior settings?

Gaurav Mahajan (UCSD) Generalization in RL 10 / 24



Special case I: Linear bandits (H = 1 RL problem) [Abe and Long, 1999]

[Assumption 1] One step RL (H = 1): single state: s0, large set of actions: a ∈ A
[Assumption 2] Linear reward: There exists unknown vector w? ∈ Rd and known feature
map φ : S ×A → Rd

E[r(s0, a)] = 〈w?, φ(s0, a)〉

Polynomial sample complexity is possible here [Auer et al. 2002; Dani et al. 2008]

Gaurav Mahajan (UCSD) Generalization in RL 11 / 24



Special case I: Important structural property

Linear “value-based” Hypothesis class F :
set of all (bounded) linear vectors F = {w ∈ Rd}
Define for each hypothesis w ∈ F , Qw(s0, a) = 〈w, φ(s0, a)〉,
(greedy) value Vw(s0) and (greedy) policy πw(s0)

An important structural property:

Bilinear Regret: for all w ∈ F , on policy difference between claimed reward E[Qw] and true
reward E[r] satisfies a bilinear form

Eπw [Qw(s0, a)− r] = Eπw

[〈
w, φ(s0, a)

〉
−
〈
w?, φ(s0, a)

〉]
=
〈
w − w?, Eπw [φ(s0, a)]

〉

Data reuse: There exists loss function `(s, a, r, w′) = Qw′ (s, a)− r such that the bilinear
form for any hypothesis w′ is estimable when playing πw

Eπw [`(s0, a, r, w
′)] =

〈
w′ − w?, Eπw [φ(s0, a)]

〉
Essentially, we can use data collected under πw to estimate the bilinear form for w′
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Special case II: Linear Bellman complete classes [Munos, 2005]

[Assumption 1] Linear Q?: There exists unknown w? ∈ Rd and known features
φ : S ×A → Rd such that

Q?(s, a) = 〈w, φ(s, a)〉

[Assumption 2] Completeness: Let F be the linear “value-based” hypothesis class.
For every w ∈ F , there exists T (w) ∈ F such that

〈T (w), φ(s, a)〉 = r(s, a) + Es′∼P (s,a)[max
a′

Qw(s′, a′)]

Polynomial sample complexity is possible here [Zanette et al. 2020])
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Special case II: Important structural property

Analogous structural property holds here:

Bilinear Regret: on policy difference between claimed reward E[Qw − Vw] and true reward
E[r] satisfies a bilinear form

Eπw [Qw(sh, ah)− r(sh, ah)− Vw(sh+1)]

= Eπw

[〈
w, φ(s, a)

〉
−
〈
T (w), φ(s, a)

〉]
=
〈
w − T (w),Eπw [φ(s, a)]

〉
=
〈
w − T (w)− (w? − T (w?)), Eπw [φ(s, a)]

〉

Data reuse: There exists loss function `(·, w′) such that the bilinear form for any hypothesis
w′ is estimable when playing πw

Eπw [`(sh, ah, rh, sh+1, w
′)] =

〈
w′ − T (w′)− (w? − T (w?)), Eπw [φ(s, a)]

〉
Here the loss function is

`(sh, ah, rh, sh+1, w
′) = Qw′ (sh, ah)− rh − Vw′ (sh+1)
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Special case III: Linear Mixture Model classes [Modi et al., 2020b]

[Assumption 1] Linear dynamics and rewards: There exists unknown w? ∈ Rd and known
features φ : S ×A× S → Rd, ψ : S ×A → Rd such that

P (s′ | s, a) = 〈w?, φ(s, a, s′)〉 and E[r(s, a)] = 〈w?, ψ(s, a)〉

Polynomial sample complexity is possible here [Modi et al., 2020; Ayoub et al., 2020])
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Special case III: Important structural property

Linear “model-based” Hypothesis class F :
set of all (bounded) linear vectors F = {w ∈ Rd}
Define for each hypothesis w ∈ F , Pw(s′|s, a) = 〈w, φ(s, a, s′)〉,
Qw(s, a), Vw(s) and πw(s) as the optimal functions for model Pw

Analogous structural property holds here:

Bilinear Regret: on policy difference between claimed reward E[Qw − Vw] and true reward
E[r] satisfies a bilinear form

Eπw [Qw(sh, ah)− r(sh, ah)− Vw(sh+1)]

=
〈
w − w?, Eπw

[
ψ(sh, ah) +

∑
s̄∈S

φ(sh, ah, s̄)Vw(s̄)
]〉

Data reuse: There exists loss function `w(·) such that the bilinear form for any hypothesis
w′ is estimable when playing πw

Eπw [`(sh, ah, rh, sh+1, w
′)] =

〈
w′ − w?,Eπw

[∑
s̄∈S

φ(sh, ah, s̄)Vw(s̄)
]〉

Here the loss function is

`w(sh, ah, rh, sh+1, w
′) = w′h

>
(
ψ(sh, ah) +

∑
s̄∈S

φ(sh, ah, s̄)Vw(s̄)
)
− Vw(sh+1)− rh
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BiLinear Classes: structural properties to enable generalization in RL

Hypothesis class: {f ∈ F}
with associated state action value Qf (s, a), (greedy) value Vf (s) and (greedy) policy πf

can be model-based or value-based class.

Definition

A (F , `) forms an (implicit) Bilinear class if there exists wh : F → Rd and Φh : F → Rd for all
timesteps h ∈ [H]:

Bilinear regret: on-policy difference between claimed reward and true reward satisfies a
bilinear form:∣∣Eπf

[
Qf (sh, ah)− r(sh, ah)− Vf (sh+1)

]∣∣ ≤ ∣∣〈wh(f)− wh(f?),Φh(f)〉
∣∣

Data reuse: There exists loss function `f (sh, ah, rh, sh+1, g) such that the bilinear form for
any hypothesis g is estimable when playing πf∣∣Eπf

[
`f (rh, sh, ah, sh+1, g)

]∣∣ =
∣∣〈wh(g)− wh(f?),Φh(f)〉

∣∣
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Theorem 1: Structural Commonalities and Bilinear Classes

Theorem (Du, Kakade, Lee, Lovett, M., Sun, Wang ’21)

The following models are bilinear classes for some discrepancy function `(·)
Linear Bellman Completion: [Munos et al. ’05, Zanette et al. ’19]

Linear MDPs: [Wang & Yang ’18]; [Jin et al.’19] (the transition matrix is low rank)
Linear Quadratic Regulators (LQR): standard control theory model
Generalized Linear Bellman Completion: [Wang et al. ’2019]

FLAMBE / Feature Selection: [Agarwal et al. ’20]

Linear Mixture MDPs: [Modi et al. ’20, Ayoub et al. ’20]

Block MDPs [Du et al. ’19]

Factored MDPs [Sun et al. ’19]

Kernelized Nonlinear Regulator [Kakade et al. ’20]

And more. . .

(almost) all “named” models (with provable generalization) are bilinear classes
two exceptions: a) deterministic linear Q? [Wen & Van Roy, ’13; Du, Lee, M., Wang, ’20]

b) Q? state-action aggregation [Dong et al. ’20]

Bilinear classes generalize the: Bellman rank [Jiang et al. ’17]; Witness rank [Wen et al. ’19]

The framework easily leads to new models (see paper).
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The Algorithm: BiLin-UCB

Algorithm 1: BiLin-UCB

1 Input number of iterations T , estimator function `, batch size m, confidence
radius R

2 Initialize cumulative discrepancy function σ2(·) = 0
3 for iteration t = 0, 1, . . . , T − 1 do
4 Find the optimistic ft ∈ F :

ft := arg max
f

Vf (s0) subject to σ2(f) ≤ R

5 Sample m trajectories using πft and create a batch dataset of size mH:

S = {(rh, sh, ah, sh+1) ∈ trajectories}

6 Update the cumulative discrepancy function σ2(·)

σ2(·)← σ2(·) +
( 1

|S|
∑
o∈S

`(o, ·)
)2

7 return: the best policy πf found

Gaurav Mahajan (UCSD) Generalization in RL 19 / 24



Theorem 2: Generalization in RL

Theorem (Du, Kakade, Lee, Lovett, M., Sun, Wang ’21)

Assume (F , `) is a bilinear class with Φh(f) ∈ Rd, bounded ` and the class is realizable, i.e.

Q? ∈ F . Using d2

ε2
· poly(H) · log(|F|) · log(1/δ) trajectories, the BiLin-UCB algorithm returns an

ε-opt policy (with prob. 1− δ).

The proof is “elementary” using the elliptical potential function.[Dani et al., ’08]

Extends to infinite dimensional problems using max info gain γT [Auer et al., ’02; Srinivas et
al., ’10; Abbasi-Yadkori et al., ’11]
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Proof intuition

The proof follows from this lemma about existence of high quality policy.

Lemma (Existence of high quality policy)

Suppose we run the algorithm for T ≈ d iterations. Then, there exists t ∈ [T ] such that the
following is true for hypothesis ft:

V ? − V πft (s0) ≤ 2H
√
d · H

√
log(|F|)
m︸ ︷︷ ︸

SL generalization error of `
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Proof of main lemma

Bilinear regret assumption and Optimism give an upper bound on sub-optimality for all
iterations t.

V ? − V πft (s0) ≤
H−1∑
h=0

|〈wh(ft)− wh(f?),Φh(ft)〉| .

Our goal then is to show existence of iteration t ∈ [T ] such that

H−1∑
h=0

|〈wh(ft)− wh(f?),Φh(ft)〉| is small

To that end, we will show existence of iteration t ∈ [T ] such that for Σ0;h = λI and

Σt;h = Σ0;h +
∑t−1
i=0 Φh(fi)Φh(fi)

>, the following is true

‖wh(ft)− wh(f?)‖Σt;h
‖Φh(ft)‖Σ−1

t;h
is small for all h ∈ [H]
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Proof of main lemma

To that end, we will show existence of iteration t ∈ [T ] such that for Σ0;h = λI and

Σt;h = Σ0;h +
∑t−1
i=0 Φh(fi)Φh(fi)

>, the following is true

‖wh(ft)− wh(f?)‖Σt;h
‖Φh(ft)‖Σ−1

t;h
is small for all h ∈ [H]

From our optimization constraint, we get that for all time t (we can set R small because of
uniform convergence and Data reuse assumption)

‖wh(ft)− wh(f?)‖Σt;h
≤ R = 2

√
d · H

√
log(|F|)
m︸ ︷︷ ︸

SL generalization error

for all h ∈ [H]

From Elliptical Potential Lemma, there exists t ∈ [T ] (for T ≈ d) such that

‖Φh(ft)‖2
Σ−1

t;h

= O(1) for all h ∈ [H]

Note that for infinite dimensional spaces, we can use max info gain instead.
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Thanks!

A generalization theory in RL is possible!

linear bandit theory → RL theory (bilinear classes) is rich.

covers known cases and new cases
leads to simple algorithm and proof

Simon Du Sham Kakade Jason Lee

Shachar Lovett
Wen Sun Ruosong Wang
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