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Goal: approximate spectrum



Traditionally, approximate a few eigenvalues to high
accuracy.



Local spectrum approximation via power method,
vanilla Lanczos, etc.



CESM contains all information about the spectrum



CESM contains all information about the spectrum
and gives a natural target for a global approximation



Goal: approximate spectrum globally



The Wasserstein distance between distribution
functions p and v is

A1, v) = / () — ()| de.



Goal: Find approximation to ® with small Wasserstein
distance, accessing A only through matrix-vector
products.



The cumulative emperical spectral measure (CESM) of
A is the distribution function

d(x) = zn:l 1\ < zl.

n



The weighted CESM of A and v; is the distribution
function

n

U, (r) = Z [wz]] 1[)‘3' < x]

j=1

where [w;]; is the square of the projection of v, onto
the i-th eigenvector of A.



The SLQ output is the average of the Gaussian
quadrature approximations to the weighted CESMs,

~ 1

<[\Ili]%q> = Z — [\Ili]]gi'q°



Questions: For good Wasserstein approximation
- how many samples do we need?
- how many Lanczos iterations for each sample?












The main cost of SLQ is running Lanczos on (A, v,)



If we run k iterations of Lanczos on n,, vectors, total
number of matrix vector products is k n,,.



Lanczos requires O(n) storage without reorthogon-
alization and O(kn) with.



Our analysis assumes an implementation of Lanczos
which is close to exact arithmetic; for instance using
reorthogonalization.



There is evidence SLQ still seems to work without
reorthogonalization, but our analysis isn't necessarily
directly applicable in these cases.



Lanczos (and therefore SLQ) only requires access to A
through matrix-vector products!



I[true] =1 I[false] =0






[wl;1[A; < 2] = Vi 1A < z]v;



SLQ overview:
- sample vy, vy, ..., v, iid from unit hypersphere

- for each v;, approximate weighted CESM W, by
[U,]74, obtained via k iterations of Lanczos

- Output average ([¥,]5%) = >0 L[¥,]3

7 =1 n, 2



Remark. The moments of the k-point Gaussian
quadrature rule [¥,]3* are equal to those of ¥, through
degree 2k — 1.



Theorem. The k-point Gaussian quadrature rule [¥,]%
for ¥, can be computed using k iterations of the
Lanczos algorithm on A and v,.



Remark. The runtime for k iterations of the Lanczos
algorithmon A and v, is O(k (T, + n))



Remark. The runtime for k iterations of the Lanczos
algorithm on A and v, is O(k (T, + n)), and the
required storage is O(n) without reorthogonalization

and O(nk) with.






Lemma. Let m = n ®(x). Then,

V. (x) ~ Beta (%, o _2 m)



The uniform distribution on the unit hypersphere is

unitarily invariant. Let U be the eigenvectors of A. We
may therefore assume

X
Ulv, 2 =
C I

where x ~ N(0,1).



Thus, the [w,]. have joint distribution given by,
ilj

o (BN (x],)?
il = (uxn) = T (P

for j =1,...,n, where [x,] are iid standard normals.




For independent chi-square random variables Y ~ x2
and Z ~ X%,

Y a [
_ L Beta(2.Z2).
Y +2 ea(2’2>






Theorem. Let X ~ Beta(a, 5). Then E[X] and

X is4(a+ [+ 1)-sub-Gaussian.

_ _«a
a+p



Lemma. Suppose X is o*-sub-Gaussian. Let X,,..., X,
be iid samples of X. Then for all ¢ > 0,

3

PII{X,) — ELX]| > 1) < 2exp (—55#)



Theorem. For all t > 0,
max P [\@(m) — (U, (2))| > t] < 2exp(—n,(n + 2)t?)

P [mi_ix 1B(x) — (U,(2))| > t] < 2nexp(—n, (n + 2)t2).



Let I[A] = A .- Then,

/\CID x))|dx

)maX\fb( ) = (Ti(@))].

ma



Given0 < n < 1,ifn, >4(n+2)t721In(2nn™1),

Pldyw (@, (V) > tT[A]/2| <



Proposition. If p and v are supported on (a,b) and
have equal moments through degree s, then

dy(p,v) < 12(b—a)s™ .



Therefore, if k > 12t + 3,

(i (W3, [W31)) < dyw (W3, [W]7) < tI[A]/2.

1



Theorem. Given 0 < n < 1landt > 0, set

n, > 4(n+2)t?In(2ny ') and k > 12¢7! + 5. Then,
using k n,, matrix-vector products, SLQ outputs an
approximation ([¥,];!) to ® satisfying,

Pldyw (@, ([W]5") > tI[A]| <n.



Theorem. If © and v are supported on (a, b) and have

equal moments through degree s, then the function
p — v changes sign at least s times on (a, b).



Since [¥,]3* and ¥, share 2k — 1 moments, then
[U,]5* — W, changes sign at least 2k — 1 times.



The Gaussian quadrature [W,]§% is piecewise constant
except at k points of increase



The Gaussian quadrature [W,]§% is piecewise constant
except at k points of increase, and both ¥, and [¥,]%*
are weakly increasing.



Thus, the only possible points of sign change in

[U,]5¢ — W, are at the points of increase and constant

regions of [¥, 3"



Therefore, there is a sign change in [¥,]5* — U, at every
point of increase and every constant region of [W]:%.
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