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Goal: approximate spectrum



Tradi onally, approximate a few eigenvalues to high
accuracy.



Local spectrum approxima on via power method,
vanilla Lanczos, etc.



CESM contains all informa on about the spectrum

and gives a natural target for a global approxima on



CESM contains all informa on about the spectrum
and gives a natural target for a global approxima on



Goal: approximate spectrum globally



The Wasserstein distance between distribu on
func ons 𝜇 and 𝜈 is

𝑑W(𝜇, 𝜈) = ∫ |𝜇(𝑥) − 𝜈(𝑥)|d𝑥.



Goal: Find approxima on to Φ with small Wasserstein
distance, accessing A only through matrix-vector
products.



The cumula ve emperical spectral measure (CESM) of
A is the distribu on func on

Φ(𝑥) =
𝑛

∑
𝑗=1

1
𝑛 1[𝜆𝑗 ≤ 𝑥].



The weighted CESM of A and v𝑖 is the distribu on
func on

Ψ𝑖(𝑥) =
𝑛

∑
𝑗=1

[𝑤𝑖]𝑗 1[𝜆𝑗 ≤ 𝑥]

where [𝑤𝑖]𝑖 is the square of the projec on of v𝑖 onto
the 𝑖-th eigenvector of A.



The SLQ output is the average of the Gaussian
quadrature approxima ons to the weighted CESMs,

⟨[Ψ𝑖]gq
𝑘 ⟩ ∶=

𝑛v

∑
𝑖=1

1
𝑛v

[Ψ𝑖]gq
𝑘 .



Ques ons: For good Wasserstein approxima on
– how many samples do we need?
– how many Lanczos itera ons for each sample?



Φ(𝑥) =
𝑛

∑
𝑗=1

1
𝑛1[𝜆𝑗 ≤ 𝑥]



Φ(𝑥) =
𝑛

∑
𝑗=1

1
𝑛1[𝜆𝑗 ≤ 𝑥] Ψ𝑖(𝑥) =
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Φ(𝑥) =
𝑛

∑
𝑗=1

1
𝑛1[𝜆𝑗 ≤ 𝑥] Ψ𝑖(𝑥) =

𝑛
∑
𝑗=1

[𝑤𝑖]𝑗1[𝜆𝑗 ≤ 𝑥] [Ψ𝑖]gq
𝑘 (𝑥) =

𝑘
∑
𝑗=1

[𝑑𝑖]𝑗1[[𝜃𝑖]𝑗 ≤ 𝑥]



The main cost of SLQ is running Lanczos on (A, v𝑖)



If we run 𝑘 itera ons of Lanczos on 𝑛v vectors, total
number of matrix vector products is 𝑘 𝑛v.



Lanczos requires 𝑂(𝑛) storage without reorthogon-
aliza on and 𝑂(𝑘𝑛) with.



Our analysis assumes an implementa on of Lanczos
which is close to exact arithme c; for instance using
reorthogonaliza on.



There is evidence SLQ s ll seems to work without
reorthogonaliza on, but our analysis isn’t necessarily
directly applicable in these cases.



Lanczos (and therefore SLQ) only requires access to A
through matrix-vector products!
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Φ(𝑥) =
𝑛

∑
𝑗=1

1
𝑛1[𝜆𝑗 ≤ 𝑥] = 𝑛−1 tr(1[A ≤ 𝑥])



Ψ𝑖(𝑥) =
𝑛

∑
𝑗=1

[𝑤𝑖]𝑗1[𝜆𝑗 ≤ 𝑥] = vT
𝑖 1[A ≤ 𝑥]v𝑖



SLQ overview:
– sample v1, v2, … , v𝑛v

iid from unit hypersphere
– for each v𝑖, approximate weighted CESM Ψ𝑖 by

[Ψ𝑖]gq
𝑘 , obtained via 𝑘 itera ons of Lanczos

– Output average ⟨[Ψ𝑖]gq
𝑘 ⟩ = ∑𝑛v

𝑖=1
1
𝑛v

[Ψ𝑖]gq
𝑘



Remark. The moments of the 𝑘-point Gaussian
quadrature rule [Ψ𝑖]gq

𝑘 are equal to those of Ψ𝑖 through
degree 2𝑘 − 1.



Theorem. The 𝑘-point Gaussian quadrature rule [Ψ𝑖]gq
𝑘

for Ψ𝑖 can be computed using 𝑘 itera ons of the
Lanczos algorithm on A and v𝑖.



Remark. The run me for 𝑘 itera ons of the Lanczos
algorithm on A and v𝑖 is 𝑂(𝑘 (𝑇mv + 𝑛))

, and the
required storage is 𝑂(𝑛) without reorthogonaliza on
and 𝑂(𝑛𝑘) with.



Remark. The run me for 𝑘 itera ons of the Lanczos
algorithm on A and v𝑖 is 𝑂(𝑘 (𝑇mv + 𝑛)), and the
required storage is 𝑂(𝑛) without reorthogonaliza on
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𝑑W(Φ, ⟨[Ψ𝑖]gq
𝑘 ⟩) ≤ 𝑑W(Φ, ⟨Ψ𝑖⟩) + 𝑑W(⟨Ψ𝑖⟩, ⟨[Ψ𝑖]gq

𝑘 ⟩)
≤ 𝑑W(Φ, ⟨Ψ𝑖⟩) + ⟨𝑑W(Ψ𝑖, [Ψ𝑖]gq

𝑘 )⟩.



Lemma. Let 𝑚 = 𝑛 Φ(𝑥). Then,

Ψ𝑖(𝑥) ∼ Beta (𝑚
2 , 𝑛 − 𝑚

2 ) .



The uniform distribu on on the unit hypersphere is
unitarily invariant. Let U be the eigenvectors of A. We
may therefore assume

UTv𝑖
d= x

‖x‖,

where x ∼ 𝒩(0, I).



Thus, the [𝑤𝑖]𝑗 have joint distribu on given by,

[𝑤𝑖]𝑗
d= ([x]𝑗

‖x‖)
2

= ([x]𝑗)2

([x]1)2 + ⋯ + ([x]𝑛)2 ,

for 𝑗 = 1, … , 𝑛, where [x𝑖] are iid standard normals.



For independent chi-square random variables 𝑌 ∼ 𝜒2
𝛼

and 𝑍 ∼ 𝜒2
𝛽,

𝑌
𝑌 + 𝑍 ∼ Beta (𝛼

2 , 𝛽
2) .



Let 𝑌 = ∑𝑚
𝑗=1([x]𝑗)2 and 𝑍 = ∑𝑛

𝑗=𝑚+1([x]𝑗)2. Then

Φ(𝑥) =
𝑚

∑
𝑗=1

[𝑤𝑖]𝑗 = ([x]1)2 + ⋯ + ([x]𝑚)2

([x]1)2 + ⋯ + ([x]𝑛)2 = 𝑌
𝑌 + 𝑍 .



Theorem. Let 𝑋 ∼ Beta(𝛼, 𝛽). Then 𝔼[𝑋] = 𝛼
𝛼+𝛽 and

𝑋 is 4(𝛼 + 𝛽 + 1)-sub-Gaussian.



Lemma. Suppose 𝑋 is 𝜎2-sub-Gaussian. Let 𝑋1, … , 𝑋𝑛v
be iid samples of 𝑋. Then for all 𝑡 > 0,

ℙ[|⟨𝑋𝑖⟩ − 𝔼[𝑋]| > 𝑡] ≤ 2 exp (− 𝑛v
2𝜎2 𝑡2) .



Theorem. For all 𝑡 > 0,

max
𝑥

ℙ[|Φ(𝑥) − ⟨Ψ𝑖(𝑥)⟩| > 𝑡] ≤ 2 exp(−𝑛v(𝑛 + 2)𝑡2)

ℙ[ max
𝑥

|Φ(𝑥) − ⟨Ψ𝑖(𝑥)⟩| > 𝑡] ≤ 2𝑛 exp(−𝑛v(𝑛 + 2)𝑡2).



Let 𝐼[A] = 𝜆max − 𝜆min. Then,

𝑑W(Φ, ⟨Ψ𝑖⟩) = ∫ |Φ(𝑥) − ⟨Ψ𝑖(𝑥)⟩|d𝑥
≤ 𝐼(A) max

𝑥
|Φ(𝑥) − ⟨Ψ𝑖(𝑥)⟩|.



Given 0 < 𝜂 < 1, if 𝑛v ≥ 4(𝑛 + 2)𝑡−2 ln(2𝑛𝜂−1),

ℙ[𝑑W(Φ, ⟨Ψ𝑖⟩) > 𝑡𝐼[A]/2] ≤ 𝜂.



Proposi on. If 𝜇 and 𝜈 are supported on (𝑎, 𝑏) and
have equal moments through degree 𝑠, then

𝑑W(𝜇, 𝜈) ≤ 12(𝑏 − 𝑎)𝑠−1.



Therefore, if 𝑘 > 12𝑡−1 + 1
2 ,

⟨𝑑W(Ψ𝑖, [Ψ𝑖]gq
𝑘 )⟩ ≤ 𝑑W(Ψ𝑖, [Ψ𝑖]gq

𝑘 ) ≤ 𝑡𝐼[A]/2.



Theorem. Given 0 < 𝜂 < 1 and 𝑡 > 0, set
𝑛v ≥ 4(𝑛 + 2)𝑡−2 ln(2𝑛𝜂−1) and 𝑘 > 12𝑡−1 + 1

2 . Then,
using 𝑘 𝑛v matrix-vector products, SLQ outputs an
approxima on ⟨[Ψ𝑖]gq

𝑘 ⟩ to Φ sa sfying,

ℙ[𝑑W(Φ, ⟨[Ψ𝑖]gq
𝑘 ⟩) > 𝑡𝐼[A]] ≤ 𝜂.



Theorem. If 𝜇 and 𝜈 are supported on (𝑎, 𝑏) and have
equal moments through degree 𝑠, then the func on
𝜇 − 𝜈 changes sign at least 𝑠 mes on (𝑎, 𝑏).



Since [Ψ𝑖]gq
𝑘 and Ψ𝑖 share 2𝑘 − 1 moments, then

[Ψ𝑖]gq
𝑘 − Ψ𝑖 changes sign at least 2𝑘 − 1 mes.



The Gaussian quadrature [Ψ𝑖]gq
𝑘 is piecewise constant

except at 𝑘 points of increase

, and both Ψ𝑖 and [Ψ𝑖]gq
𝑘

are weakly increasing.



The Gaussian quadrature [Ψ𝑖]gq
𝑘 is piecewise constant

except at 𝑘 points of increase, and both Ψ𝑖 and [Ψ𝑖]gq
𝑘

are weakly increasing.



Thus, the only possible points of sign change in
[Ψ𝑖]gq

𝑘 − Ψ𝑖 are at the points of increase and constant
regions of [Ψ𝑖]gq

𝑘



Therefore, there is a sign change in [Ψ𝑖]gq
𝑘 − Ψ𝑖 at every

point of increase and every constant region of [Ψ]gq
𝑘 .
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