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Goal: approximate spectrum



Tradiধonally, approximate a few eigenvalues to high
accuracy.



Local spectrum approximaধon via power method,
vanilla Lanczos, etc.



CESM contains all informaধon about the spectrum

and gives a natural target for a global approximaধon



CESM contains all informaধon about the spectrum
and gives a natural target for a global approximaধon



Goal: approximate spectrum globally



The Wasserstein distance between distribuধon
funcধons 𝜇 and 𝜈 is

𝑑W(𝜇, 𝜈) = ∫ |𝜇(𝑥) − 𝜈(𝑥)|d𝑥.



Goal: Find approximaধon to Φ with small Wasserstein
distance, accessing A only through matrix-vector
products.



The cumulaধve emperical spectral measure (CESM) of
A is the distribuধon funcধon

Φ(𝑥) =
𝑛

∑
𝑗=1

1
𝑛 1[𝜆𝑗 ≤ 𝑥].



The weighted CESM of A and v𝑖 is the distribuধon
funcধon

Ψ𝑖(𝑥) =
𝑛

∑
𝑗=1

[𝑤𝑖]𝑗 1[𝜆𝑗 ≤ 𝑥]

where [𝑤𝑖]𝑖 is the square of the projecধon of v𝑖 onto
the 𝑖-th eigenvector of A.



The SLQ output is the average of the Gaussian
quadrature approximaধons to the weighted CESMs,

⟨[Ψ𝑖]gq
𝑘 ⟩ ∶=

𝑛v

∑
𝑖=1

1
𝑛v

[Ψ𝑖]gq
𝑘 .



Quesধons: For good Wasserstein approximaধon
– how many samples do we need?
– how many Lanczos iteraধons for each sample?



Φ(𝑥) =
𝑛

∑
𝑗=1

1
𝑛1[𝜆𝑗 ≤ 𝑥]



Φ(𝑥) =
𝑛

∑
𝑗=1

1
𝑛1[𝜆𝑗 ≤ 𝑥] Ψ𝑖(𝑥) =

𝑛
∑
𝑗=1

[𝑤𝑖]𝑗1[𝜆𝑗 ≤ 𝑥]



Φ(𝑥) =
𝑛

∑
𝑗=1

1
𝑛1[𝜆𝑗 ≤ 𝑥] Ψ𝑖(𝑥) =

𝑛
∑
𝑗=1

[𝑤𝑖]𝑗1[𝜆𝑗 ≤ 𝑥] [Ψ𝑖]gq
𝑘 (𝑥) =

𝑘
∑
𝑗=1

[𝑑𝑖]𝑗1[[𝜃𝑖]𝑗 ≤ 𝑥]



The main cost of SLQ is running Lanczos on (A, v𝑖)



If we run 𝑘 iteraধons of Lanczos on 𝑛v vectors, total
number of matrix vector products is 𝑘 𝑛v.



Lanczos requires 𝑂(𝑛) storage without reorthogon-
alizaধon and 𝑂(𝑘𝑛) with.



Our analysis assumes an implementaধon of Lanczos
which is close to exact arithmeধc; for instance using
reorthogonalizaধon.



There is evidence SLQ sধll seems to work without
reorthogonalizaধon, but our analysis isn’t necessarily
directly applicable in these cases.



Lanczos (and therefore SLQ) only requires access to A
through matrix-vector products!
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Φ(𝑥) =
𝑛

∑
𝑗=1

1
𝑛1[𝜆𝑗 ≤ 𝑥] = 𝑛−1 tr(1[A ≤ 𝑥])



Ψ𝑖(𝑥) =
𝑛

∑
𝑗=1

[𝑤𝑖]𝑗1[𝜆𝑗 ≤ 𝑥] = vT
𝑖 1[A ≤ 𝑥]v𝑖



SLQ overview:
– sample v1, v2, … , v𝑛v

iid from unit hypersphere
– for each v𝑖, approximate weighted CESM Ψ𝑖 by

[Ψ𝑖]gq
𝑘 , obtained via 𝑘 iteraধons of Lanczos

– Output average ⟨[Ψ𝑖]gq
𝑘 ⟩ = ∑𝑛v

𝑖=1
1
𝑛v

[Ψ𝑖]gq
𝑘



Remark. The moments of the 𝑘-point Gaussian
quadrature rule [Ψ𝑖]gq

𝑘 are equal to those of Ψ𝑖 through
degree 2𝑘 − 1.



Theorem. The 𝑘-point Gaussian quadrature rule [Ψ𝑖]gq
𝑘

for Ψ𝑖 can be computed using 𝑘 iteraধons of the
Lanczos algorithm on A and v𝑖.



Remark. The runধme for 𝑘 iteraধons of the Lanczos
algorithm on A and v𝑖 is 𝑂(𝑘 (𝑇mv + 𝑛))

, and the
required storage is 𝑂(𝑛) without reorthogonalizaধon
and 𝑂(𝑛𝑘) with.
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𝑑W(Φ, ⟨[Ψ𝑖]gq
𝑘 ⟩) ≤ 𝑑W(Φ, ⟨Ψ𝑖⟩) + 𝑑W(⟨Ψ𝑖⟩, ⟨[Ψ𝑖]gq

𝑘 ⟩)
≤ 𝑑W(Φ, ⟨Ψ𝑖⟩) + ⟨𝑑W(Ψ𝑖, [Ψ𝑖]gq

𝑘 )⟩.



Lemma. Let 𝑚 = 𝑛 Φ(𝑥). Then,

Ψ𝑖(𝑥) ∼ Beta (𝑚
2 , 𝑛 − 𝑚

2 ) .



The uniform distribuধon on the unit hypersphere is
unitarily invariant. Let U be the eigenvectors of A. We
may therefore assume

UTv𝑖
d= x

‖x‖,

where x ∼ 𝒩(0, I).



Thus, the [𝑤𝑖]𝑗 have joint distribuধon given by,

[𝑤𝑖]𝑗
d= ([x]𝑗

‖x‖)
2

= ([x]𝑗)2

([x]1)2 + ⋯ + ([x]𝑛)2 ,

for 𝑗 = 1, … , 𝑛, where [x𝑖] are iid standard normals.



For independent chi-square random variables 𝑌 ∼ 𝜒2
𝛼

and 𝑍 ∼ 𝜒2
𝛽,

𝑌
𝑌 + 𝑍 ∼ Beta (𝛼

2 , 𝛽
2) .



Let 𝑌 = ∑𝑚
𝑗=1([x]𝑗)2 and 𝑍 = ∑𝑛

𝑗=𝑚+1([x]𝑗)2. Then

Φ(𝑥) =
𝑚

∑
𝑗=1

[𝑤𝑖]𝑗 = ([x]1)2 + ⋯ + ([x]𝑚)2

([x]1)2 + ⋯ + ([x]𝑛)2 = 𝑌
𝑌 + 𝑍 .



Theorem. Let 𝑋 ∼ Beta(𝛼, 𝛽). Then 𝔼[𝑋] = 𝛼
𝛼+𝛽 and

𝑋 is 4(𝛼 + 𝛽 + 1)-sub-Gaussian.



Lemma. Suppose 𝑋 is 𝜎2-sub-Gaussian. Let 𝑋1, … , 𝑋𝑛v
be iid samples of 𝑋. Then for all 𝑡 > 0,

ℙ[|⟨𝑋𝑖⟩ − 𝔼[𝑋]| > 𝑡] ≤ 2 exp (− 𝑛v
2𝜎2 𝑡2) .



Theorem. For all 𝑡 > 0,

max
𝑥

ℙ[|Φ(𝑥) − ⟨Ψ𝑖(𝑥)⟩| > 𝑡] ≤ 2 exp(−𝑛v(𝑛 + 2)𝑡2)

ℙ[ max
𝑥

|Φ(𝑥) − ⟨Ψ𝑖(𝑥)⟩| > 𝑡] ≤ 2𝑛 exp(−𝑛v(𝑛 + 2)𝑡2).



Let 𝐼[A] = 𝜆max − 𝜆min. Then,

𝑑W(Φ, ⟨Ψ𝑖⟩) = ∫ |Φ(𝑥) − ⟨Ψ𝑖(𝑥)⟩|d𝑥
≤ 𝐼(A) max

𝑥
|Φ(𝑥) − ⟨Ψ𝑖(𝑥)⟩|.



Given 0 < 𝜂 < 1, if 𝑛v ≥ 4(𝑛 + 2)𝑡−2 ln(2𝑛𝜂−1),

ℙ[𝑑W(Φ, ⟨Ψ𝑖⟩) > 𝑡𝐼[A]/2] ≤ 𝜂.



Proposiধon. If 𝜇 and 𝜈 are supported on (𝑎, 𝑏) and
have equal moments through degree 𝑠, then

𝑑W(𝜇, 𝜈) ≤ 12(𝑏 − 𝑎)𝑠−1.



Therefore, if 𝑘 > 12𝑡−1 + 1
2 ,

⟨𝑑W(Ψ𝑖, [Ψ𝑖]gq
𝑘 )⟩ ≤ 𝑑W(Ψ𝑖, [Ψ𝑖]gq

𝑘 ) ≤ 𝑡𝐼[A]/2.



Theorem. Given 0 < 𝜂 < 1 and 𝑡 > 0, set
𝑛v ≥ 4(𝑛 + 2)𝑡−2 ln(2𝑛𝜂−1) and 𝑘 > 12𝑡−1 + 1

2 . Then,
using 𝑘 𝑛v matrix-vector products, SLQ outputs an
approximaধon ⟨[Ψ𝑖]gq

𝑘 ⟩ to Φ saধsfying,

ℙ[𝑑W(Φ, ⟨[Ψ𝑖]gq
𝑘 ⟩) > 𝑡𝐼[A]] ≤ 𝜂.



Theorem. If 𝜇 and 𝜈 are supported on (𝑎, 𝑏) and have
equal moments through degree 𝑠, then the funcধon
𝜇 − 𝜈 changes sign at least 𝑠 ধmes on (𝑎, 𝑏).



Since [Ψ𝑖]gq
𝑘 and Ψ𝑖 share 2𝑘 − 1 moments, then

[Ψ𝑖]gq
𝑘 − Ψ𝑖 changes sign at least 2𝑘 − 1 ধmes.



The Gaussian quadrature [Ψ𝑖]gq
𝑘 is piecewise constant

except at 𝑘 points of increase

, and both Ψ𝑖 and [Ψ𝑖]gq
𝑘

are weakly increasing.



The Gaussian quadrature [Ψ𝑖]gq
𝑘 is piecewise constant

except at 𝑘 points of increase, and both Ψ𝑖 and [Ψ𝑖]gq
𝑘

are weakly increasing.



Thus, the only possible points of sign change in
[Ψ𝑖]gq

𝑘 − Ψ𝑖 are at the points of increase and constant
regions of [Ψ𝑖]gq

𝑘



Therefore, there is a sign change in [Ψ𝑖]gq
𝑘 − Ψ𝑖 at every

point of increase and every constant region of [Ψ]gq
𝑘 .
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