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Motivation

We consider the problem of efficiently computing a kernel matrix.

Suppose there are n data points {xi }
n
i=1, each of dimension d . The

goal is to compute the n × n PSD kernel matrix K where each
entry Ki,j = k(xi , xj) under certain kernel function k .
Additionally, we consider the high-dimensional, or
over-parametrized setting, where d � n. This is of particular
interest in NLP, biology and training over-parametrized neural
networks.
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Polynomial kernel

Instead of designing algorithm for any kernel, we focus on
polynomial kernels.

Advantage: many popular kernels can be well-approximated using
their Taylor expansions, e.g., Gaussian kernel, arc-cosine kernel
(Cho and Saul, 09) and neural-tangent kernel (Jacot, Gabriel and
Hongler, 18).
Polynomial kernel of degree q is defined as Pq(x , y) = 〈x , y〉q.
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Intuition

Instead of computing Pq directly, we compute Pq = Φ>Φ, where
Φ ∈ Rdq×n is defined using a lifting function φ : Rd → Rdq

with
φ(x)i1,i2,...,iq = x⊗q = xi1xi2 . . . xiq for i1, i2, . . . , iq ∈ {1,2, . . . ,d }.

Φ = X⊗q ∈ Rdq×n.
Goal: approximate X⊗q efficiently without explicitly forming it.
Typically, it involves looking for a matrix Π ∈ Rs×dq

with s � dq

and forming ΠX⊗q very fast.
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Prior works

Prior methods:

I Random Fourier features (Rahimi and Recht, 07);
I Nystrom method (Williams and Seeger, 01; Musco and Musco, 17);
I Oblivious sketching (Ahle, Kapralov, Knudsen, Pagh, Velingker,

Woodruff and Zandieh, 20);
I Adaptive Leverage score sampling (Woodruff and Zandieh, 20).

State-of-the-art are oblivious sketching and adaptive leverage
score sampling.
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Oblivious sketching

Oblivious sketching: view the computation of x⊗q as a binary tree with
q nodes.

S1
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3
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Oblivious sketching

Advantage: algorithm enjoys a great amount of independence and
randomness, therefore has strong guarantee.

Can we reduce the amount of randomness and improve the
running time of oblivious sketching?
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Our approach: constructing the tree with limited
randomness

Instead of using q different random sketches, we just use 2 of them.
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Our approach: constructing the tree with limited
randomness

Advantage:

I Each layer of the tree only needs to compute one node.
I Only need to compute O(log q) nodes using repeated squaring —

critical in approximating kernels where q is large.
I Depends nearly linear on nd .

However, since we use only a constant amount of randomness,
the guarantee of ΠX⊗q is weaker than oblivious sketching: we can
only spectrally approximate X⊗q.
Nevertheless, it can be combined with other sketching techniques
to achieve the overall strong guarantee of approximate matrix
product as well and in a faster way.
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Applications

Our polynomial kernel approximation algorithm can be applied to
various settings, such as approximate a Gaussian kernel, our
algorithm gives the fastest result in over-parametrized and
unregularized setting.
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Applications

Approximate a class of slow-decaying kernels. We can classify
kernels based on the coefficients of their Taylor expansions.

I For Gaussian kernels, the coefficients are roughly 1/n!, this means
to approximate it using polynomial kernel, we only need a
poly-logarithmic number of terms.

I For a broader class of kernels with coefficients being 1/nc where
c > 1, more terms are needed.

I We propose a novel sampling scheme, where we exactly compute
the first s terms in Taylor expansion, then sample s from the
remaining terms. By carefully balancing the number of terms in
exact computation and sampling, we achieve a faster runtime.

I This leads to fast algorithm for approximating arc-cosine kernels
and neural tangent kernels.
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Applications

Solve kernel linear systems using our algorithm+preconditioning.

Solve kernel ridge regression by composing with another sketch
with even smaller size.
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Thanks for attending the talk!

If you have any questions regarding our paper, feel free to contact
the authors via email:
Zhao Song: magiclinuxkde@gmail.com
David P. Woodruff: dwoodruf@andrew.cmu.edu
Zheng Yu: zhengy@princeton.edu
Lichen Zhang: lichenz@andrew.cmu.edu
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