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The Real-world Problems

The recent success of deep learning is largely attributed to massive 

amount of labeled data. 
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However, the real-world problems..

Most of the data samples are not labeled.

The collection and storage of personal 
data are prohibited due to privacy 
concerns.

This burden impedes the widespread use of 
deep learning in real-world applications.
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Model Overview
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ART Networks

Adaptive Resonance Theory (ART), inspired by brain information processing 

mechanisms, is an unsupervised learning method for pattern recognition.

In terms of being conservative while learning new, the ART networks 

can be a solution for the online learning.
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We use Fuzzy ART to form nodes in a 

topological graph through clustering of 

input data.
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Topology Learning with MPART
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Topology Learning with MPART
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Message Passing
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Node Classification

The class information 𝒒𝒊 of a node 𝑖, called the label density, is a distribution 

over a set of known class labels 𝐶.

 Indicates how probable the node belongs to each class.

When a label 𝑦𝑡 is provided with an input 𝑥𝑡, the corresponding density value in 

the winner 𝐽𝑡, i.e. 𝑞𝐽𝑡(𝑦𝑡), increases by 1.

 Infers the class of input 𝑥𝑡 by aggregating the class information of 

neighboring nodes.

We obtain the class probability distribution 𝒑𝒕 of winner node 𝐽𝑡 by performing 𝑳-

layer message passing and normalizing it as follows.
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𝑝𝑡(𝑦) = 𝑞𝐽𝑡
𝐿 (𝑦)/෍

𝑦′∈𝐶
𝑞𝐽𝑡

𝐿 (𝑦′)



Density-Weighted Uncertainty Estimation

We use two kinds of uncertainty measures for nodes.

Combine them to get a query selection score.

Finally, the density-weighted query selection score 𝑠𝑡 using distribution 

density 𝑑𝐽𝑡
(𝐿)

is defined as follows.
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𝑢𝑒 = 1 − tanh 𝑘𝑒 ෍
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−σ𝑦∈𝐶 𝑝𝑡 𝑦 log(𝑝𝑡 𝑦 )

log( 𝐶 )
, 𝑖𝑓 𝐶 > 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Tasks 

Online active learning task for stream-based selective sampling.

Multi-class classification, where the number of classes is not known.

 The number of queries is limited to a fixed budget B within a period of W

consecutive inputs. (Query frequency = B/W)

Experimental settings

 Four kinds of datasets with different distributions: Mouse retina 

transcriptomes, Fashion MNIST, EMNIST Letters, and CIFAR-10.

Query frequency: B = 1 or 2, W = 100, 500, 1,000 or 2,000 (e.g. 1/1000, 1/500).  

We only used 10,000 randomly sampled data from the training split per trial.

 The total query budget is 10~100.
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Query Selection Strategy

Random : A random query is selected from a sequence of inputs.

Memory : The model has a memory that can store one sample.

One sample with the maximum query selection score is stored.

 The stored sample is queried at the end of the query period.

Explorer : The model cannot store any input sample.

 Selects B samples online for each query period W.

The uncertainty distribution of input data is continuously estimated.

Useful samples are selected by predicting the beneficialness.
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Experimental Results
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Visualization of training results on EMNIST Letters 

 The number of layer L = 3 and B/W = 1/1000 were used.

(a) Random (b) Memory (c) Explorer

Queried samples Queried samples Queried samples



Conclusions

We propose Message Passing Adaptive Resonance Theory (MPART) for 

online active semi-supervised learning.

MPART learns the distribution and the topology of the input data online, 

infers the class of unlabeled data, and selects the informative and 

representative samples through message passing between nodes on the 

topological graph.

We believe MPART offers new opportunities for machine learning techniques 

to be widely used in real-world applications.
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