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The Real-world Problems

¢ The recent success of deep learning is largely attributed to massive
amount of labeled data.

Beneficialness

Update estimation

% However, the real-world problems.. s
® Most of the data samples are not labeled. ﬂ
® The collection and storage of personal
data are prohibited due to privacy from stream
concerns. Labeled

sample

. . . Online
query
selection

¢ This burden impedes the widespread use of Annotator (Human)
deep learning in real-world applications.  <siream-based Online Active Learning>
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Model Overview

— Message Passing Adaptive Resonance Theory (MPART) —
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Dimension Reduction
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(ART network)
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ART Networks

» Adaptive Resonance Theory (ART), inspired by brain information processing
mechanisms, Is an unsupervised learning method for pattern recognition.

“* In terms of being conservative while learning new, the ART networks
can be a solution for the online learning. Output nodes (prototype)

“*We use Fuzzy ART to form nodes in a ej(%gﬂgtvi?n
topological graph through clustering of Bottom-up
mput data sensation
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Topology Learning with MPART

Clustering
(Fuzzy ART)

Topological Learning
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O Co-activated nodes

d;, d; = winning count of nodes
cij = co-activation count
e;; = edge weight between node i and j
Cij
d; + d;
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Topology Learning with MPART
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Message Passing

/ Layer [ — 1

xP=x"Y+s 2 e X\
jen®

Xi(l) = an information vector

]\fi(l) = a set of l-hop neighbors

]\fi(O:l) = a union of ]\fi(o), ...,]\fi(l)

e;j = edge weight

0 = propagation rate
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Node Classification

“* The class information q; of a node i, called the label density, Is a distribution
over a set of known class labels C.

® Indicates how probable the node belongs to each class.

® \When a label y; is provided with an input x;, the corresponding density value in
the winner J, I.e. q;, (y;), Increases by 1.

¢ Infers the class of input x; by aggregating the class information of
neighboring nodes.

® \\e obtain the class probability distribution p, of winner node J; by performing L-
layer message passing and normalizing it as follows.

p(y) = g (y)/zw " (')
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Density-Weighted Uncertainty Estimation

*» We use two kinds of uncertainty measures for nodes.
® Combine them to get a query selection score.

g
— 2yec Pe(Wlog(p:(¥))
U, = 1 —tanh (ke Z q;?@)) Ug = o = l;g(ICI) t ,
yeC

0, otherwise

if |C]>1

\

U =T U+ (1—7) u,

* Finally, the density-weighted query selection score s; using distribution
density d](tL) Is defined as follows.

aP =al™ 46 ) eyal P
JEN;

s; = tanh (kd : d](f)) - Uy
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¢ Online active learning task for stream-based selective sampling.
® Multi-class classification, where the number of classes i1s not known.

® The number of queries is limited to a fixed budget B within a period of W
consecutive inputs. (Query frequency = B/W)

“» Experimental settings

® Four kinds of datasets with different distributions: Mouse retina
transcriptomes, Fashion MNIST, EMNIST Letters, and CIFAR-10.

® Query frequency: B =1 or 2, W =100, 500, 1,000 or 2,000 (e.g. 1/1000, 1/500).

® \We only used 10,000 randomly sampled data from the training split per trial.
—> The total query budget is 10~100.
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Query Selection Strategy

“* Random : A random query Is selected from a sequence of inputs.

** Memory : The model has a memory that can store one sample.
® One sample with the maximum query selection score Is stored.
® The stored sample is queried at the end of the query period.

“» Explorer : The model cannot store any input sample.
® Selects B samples online for each query period W.

® The uncertainty distribution of input data is continuously estimated.

® Useful samples are selected by predicting the beneficialness.
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Experimental Results

** Visualization of training results on EMNIST Letters
® The number of layer L = 3 and B/W = 1/1000 were used.
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Conclusions

**» We propose Message Passing Adaptive Resonance Theory (MPART) for
online active semi-supervised learning.

*» MPART learns the distribution and the topology of the input data online,
Infers the class of unlabeled data, and selects the informative and

representative samples through message passing between nodes on the
topological graph.

“»* We believe MPART offers new opportunities for machine learning techniques
to be widely used in real-world applications.
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