Consistent Nonparametric Methods for Network Assisted Covariate Estimation

Xueyu Mao

Department of Computer Science
The University of Texas at Austin
International Conference on Machine Learning, 2021
Joint work with Deepayan Chakrabarti and Purnamrita Sarkar

Node Covariate Estimation

- Example: in a social network, we have information on some people's interests
- desired products
- preferred news topics
- sporting interests

- Problem: Can we infer such information for the rest from a few people's known interests and the structure of the social network?
- Application: content and ad targeting, friend and group recommendations, etc.

Model

Latent Variable Models:

- Each node $i \in[n]$ has latent vector \mathbf{z}_{i}
- Link probabilities:

$$
\mathbf{P}_{i j}=\rho_{n} f\left(\mathbf{z}_{i}, \mathbf{z}_{j} ; \boldsymbol{\Theta}\right) \quad \text { for all } i \neq j
$$

- Network:

$$
\mathbf{A}_{i j} \sim \operatorname{Bernoulli}\left(\mathbf{P}_{i j}\right) \quad \text { for all } i \neq j
$$

- Node Covariate:

$$
\mathbf{X}_{i}=g\left(\mathbf{z}_{i}\right)+\boldsymbol{\epsilon}_{i}
$$

- Problem: given node covariates $\left\{\mathbf{X}_{i} ; i \in S\right\}$ for a subset of nodes S and the adjacency matrix A, infer the node covariates of the remaining nodes $\left\{\mathbf{X}_{i} ; i \in[n] \backslash S\right\}$.

Main Contribution

- With no information on link function f :
- Propose a model-agnostic algorithm (CN-VEC) to estimate the node covairates by k nearest-neighbor regression, where nearest neighbors are chosen by a carefully designed similarity measure.
- Provably consistent
- Needs no fine-tuning
- Much faster than embedding methods, with comparable or better performance
- When f makes \mathbf{P} low rank:
- Provide a nonparametric algorithm (SVD-RBF), which is provably consistent for sparser graphs.

Model-Agnostic Algorithm

- Construct a new similarity measure

$$
\mathbf{K}_{i j}=\sum_{k \neq i, j}\left[\left(\mathbf{C}_{i k}^{2}-2\right) 1\left(\mathbf{C}_{i k} \geq 2\right)+\left(\mathbf{C}_{j k}^{2}-2\right) 1\left(\mathbf{C}_{j k} \geq 2\right)-2 \mathbf{C}_{i k} \mathbf{C}_{j k}\right] .
$$

- $\mathbf{C}_{i j}$ is the number of common neighbors between i and j

Model-Agnostic Algorithm

- Algorithm summary:

CN-VEC

for $i \in[n] \backslash S$
$\triangleright \operatorname{dist}(j) \leftarrow \mathbf{K}_{i j}$, for $j \in S$

- $\operatorname{top}_{k}(i) \leftarrow k$ nodes with the smallest values of $\operatorname{dist}(j)$
$>\hat{\mathbf{X}}_{i} \leftarrow \frac{1}{k} \sum_{j \in \text { top }_{k}(i)} \mathbf{X}_{j}$
- We prove weak consistency result on CN-VEC when average degree grows faster than $n^{1 / 3}$ - $\mathbf{C}_{i j}$ only works when average degree grows faster than \sqrt{n}

Algorithm for low-rank models

SVD-RBF

- $\hat{\mathbf{U}} \leftarrow$ top- d eigenvector matrix for \mathbf{A}
- $\hat{\mathbf{v}}_{i} \leftarrow i^{\text {th }}$ row of $\hat{\mathbf{U}}|\hat{\mathbf{E}}|^{1 / 2}$
- for $i \in[n] \backslash S$
- $\operatorname{dist}(j) \leftarrow\left\|\hat{\mathbf{v}}_{i}-\hat{\mathbf{v}}_{j}\right\| \quad$ for $j \in S$
$\triangleright \hat{\mathbf{X}}_{i} \leftarrow \frac{\sum_{j \in S} K_{\theta}\left(\hat{\mathbf{v}}_{i}, \hat{\mathbf{v}}_{j}\right) \mathbf{X}_{j}}{\sum_{j \in S} K_{\theta}\left(\hat{\mathbf{v}}_{i}, \hat{\mathbf{v}}_{j}\right)}$, where $K_{\theta}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\exp \left(-\frac{\left\|\mathbf{v}_{1}-\mathbf{v}_{2}\right\|^{2}}{2 \theta^{2}}\right)$
- We prove uniform consistency result on SVD-RBF when average degreee grows faster than $\tilde{O}(\log n)$

Simulation Experiments

(d) RDPG

(e) Running time (log scale)

Real-world Network Results

- Citation networks (Cora and CiteSeer), and social network (Sinanet)
- Use topic distribution as node covariate

CN-VEC		NOBE	2....	NBR	18	Jaccard	Fumax	RNC
SVD-RBF	\times	node2vec		W-PPR	V/7	CN		

(a) Cora

(b) CiteSeer

(b) Sinanet

Thanks!

