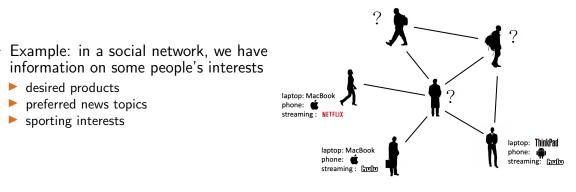
Consistent Nonparametric Methods for Network Assisted Covariate Estimation


Xueyu Mao

Department of Computer Science The University of Texas at Austin

International Conference on Machine Learning, 2021

Joint work with Deepayan Chakrabarti and Purnamrita Sarkar

Problem: Can we infer such information for the rest from a few people's known interests and the structure of the social network?

Application: content and ad targeting, friend and group recommendations, etc.

Model

Latent Variable Models:

- ▶ Each node $i \in [n]$ has latent vector \mathbf{z}_i
- Link probabilities:

$$\mathbf{P}_{ij} = \rho_n f(\mathbf{z}_i, \mathbf{z}_j; \boldsymbol{\Theta}) \quad \text{for all } i \neq j$$

$$\mathbf{A}_{ij} \sim \operatorname{Bernoulli}(\mathbf{P}_{ij}) \quad \text{for all } i \neq j$$

Node Covariate:

$$\mathbf{X}_i = g(\mathbf{z}_i) + \boldsymbol{\epsilon}_i$$

Problem: given node covariates $\{X_i; i \in S\}$ for a subset of nodes S and the adjacency matrix A, infer the node covariates of the remaining nodes $\{X_i; i \in [n] \setminus S\}$.

- 20

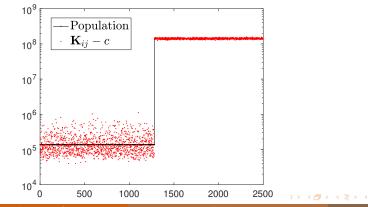
イロト イヨト イヨト イヨト

▶ With no information on link function *f*:

- Propose a model-agnostic algorithm (CN-VEC) to estimate the node covairates by k nearest-neighbor regression, where nearest neighbors are chosen by a carefully designed similarity measure.
 - Provably consistent
 - Needs no fine-tuning
 - Much faster than embedding methods, with comparable or better performance

When f makes P low rank:

Provide a nonparametric algorithm (SVD-RBF), which is provably consistent for sparser graphs.


Image: A matrix

Model-Agnostic Algorithm

Construct a new similarity measure

$$\mathbf{K}_{ij} = \sum_{k \neq i,j} \left[(\mathbf{C}_{ik}^2 - 2) \mathbf{1} (\mathbf{C}_{ik} \ge 2) + (\mathbf{C}_{jk}^2 - 2) \mathbf{1} (\mathbf{C}_{jk} \ge 2) - 2\mathbf{C}_{ik} \mathbf{C}_{jk} \right].$$

\triangleright \mathbf{C}_{ij} is the number of common neighbors between i and j

Model-Agnostic Algorithm

Algorithm summary:

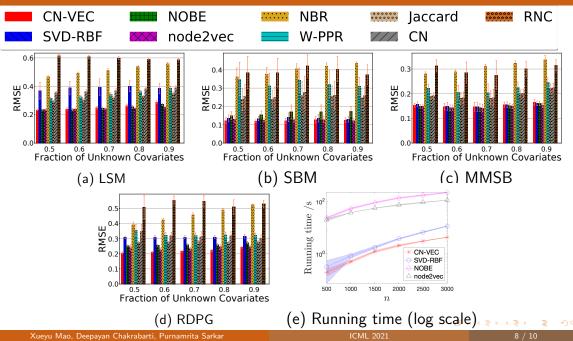
CN-VEC for $i \in [n] \setminus S$ $\blacktriangleright dist(j) \leftarrow \mathbf{K}_{ij}$, for $j \in S$ $\triangleright top_k(i) \leftarrow k$ nodes with the smallest values of dist(j) $\triangleright \hat{\mathbf{X}}_i \leftarrow \frac{1}{k} \sum_{j \in top_k(i)} \mathbf{X}_j$

▶ We prove weak consistency result on CN-VEC when average degree grows faster than n^{1/3}
 ▶ C_{ij} only works when average degree grows faster than √n

SVD-RBF

$$\hat{\mathbf{U}} \leftarrow \text{top-}d \text{ eigenvector matrix for } \mathbf{A}$$

$$\hat{\mathbf{v}}_i \leftarrow i^{th} \text{ row of } \hat{\mathbf{U}} |\hat{\mathbf{E}}|^{1/2}$$

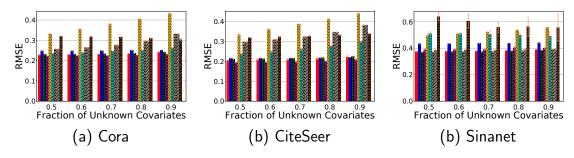

$$\text{for } i \in [n] \setminus S$$

$$\text{ } dist(j) \leftarrow \|\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_j\| \text{ for } j \in S$$

$$\hat{\mathbf{X}}_i \leftarrow \frac{\sum_{j \in S} K_\theta(\hat{\mathbf{v}}_i, \hat{\mathbf{v}}_j) \mathbf{X}_j}{\sum_{j \in S} K_\theta(\hat{\mathbf{v}}_i, \hat{\mathbf{v}}_j)}, \text{ where } K_\theta(\mathbf{v}_1, \mathbf{v}_2) = \exp\left(-\frac{\||\mathbf{v}_1 - \mathbf{v}_2\||^2}{2\theta^2}\right)$$

▶ We prove uniform consistency result on SVD-RBF when average degreee grows faster than $\tilde{O}(\log n)$

Simulation Experiments



Real-world Network Results

Citation networks (Cora and CiteSeer), and social network (Sinanet)

Use topic distribution as node covariate

Thanks!

Xueyu Mao, Deepayan Chakrabarti, Purnamrita Sarkar

イロト イヨト イヨト イヨト

э