# Batch Value-Function Approximation with Only Realizability





Tengyang Xie, Nan Jiang University of Illinois at Urbana-Champaign

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### What was known

 Almost nothing, except hardness conjecture [CJ'19]

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### What was known

 Almost nothing, except hardness conjecture [CJ'19]

#### **Importance**

Hyperparamter tuning for offline RL

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### What was known

 Almost nothing, except hardness conjecture [CJ'19]

#### **Importance**

- Hyperparamter tuning for offline RL
- Theoretical foundation for training
  - Is realizability alone sufficient for training?

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### Our contributions

#### What \

• A surprising *positive* result: BVFT

Almostaharc

#### Importance

- Hyperparamter tuning for offline RL
- Theoretical foundation for training
  - Is realizability alone sufficient for training?

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### Our contributions

#### What \

- A surprising *positive* result: BVFT
- Almonda
   Handles exponentially large function space F with misspecification

#### Importance

- Hyperparamter tuning for offline RL
- Theoretical foundation for training
  - Is realizability alone sufficient for training?

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### Our contributions

- What \
  A surprising positive result: BVFT
- Alm
   Handles exponentially large function space F with misspecification
- Potential application to hyperparameter tuning
- Hyperparamter tuning for offline RL
- Theoretical foundation for training
  - Is realizability alone sufficient for training?

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### Attempt 1: Off-policy Evaluation (OPE)

Induce two greedy policies and evaluate them

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### Attempt 1: Off-policy Evaluation (OPE)

- Induce two greedy policies and evaluate them
- Problem: OPE itself is a hard problem—importance sampling incurs exponential-in-horizon variance, and other methods (e.g., FQE/MIS) requires additional function approximation

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### Attempt 2: Estimating Bellman Error

•  $f = Q^* \Leftrightarrow ||f - \mathcal{T}f|| = 0$ , so try to estimate  $||f - \mathcal{T}f||$ ?

#### Simple(?) Problem

- Given two Q-functions  $f_1$ ,  $f_2$ , one of which is  $Q^*$
- Can we identify  $Q^*$  from a "small" exploratory dataset of (s, a, r, s')? ("small" = no |S| or exponential-in-horizon dependence)

#### Attempt 2: Estimating Bellman Error

- $f = Q^* \Leftrightarrow ||f \mathcal{T}f|| = 0$ , so try to estimate  $||f \mathcal{T}f||$ ?
- Problem: cannot be estimated in stochastic environments!
- The infamous double-sampling difficulty: the only natural estimator  $\left(f(s,a)-(r+\gamma\max_{a'}f(s',a'))\right)^2$  is positively biased

•  $f=Q^*\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]

- $f=Q^*\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]
  - $Q^{\star} \in \mathcal{G}$

- $f=Q^\star\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]
  - $Q^* \in \mathcal{G}$
  - *G* is piecewise constant

- $f=Q^*\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]
  - $Q^* \in \mathcal{G}$
  - *G* is piecewise constant
- Where can we find such a magical *G*?



- $f=Q^*\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]
  - $Q^* \in \mathcal{G}$
  - *G* is piecewise constant
- Where can we find such a magical G?
  - out of  $f_1$ ,  $f_2$  themselves!

- $f=Q^*\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]
  - $Q^* \in \mathcal{G}$
  - *G* is piecewise constant
- Where can we find such a magical G?
  - out of  $f_1$ ,  $f_2$  themselves!



- $f=Q^*\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]
  - $Q^* \in \mathcal{G}$
  - *G* is piecewise constant
- Where can we find such a magical G?
  - out of  $f_1$ ,  $f_2$  themselves!



- $f=Q^*\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]
  - $Q^* \in \mathcal{G}$
  - *G* is piecewise constant
- Where can we find such a magical G?
  - out of  $f_1$ ,  $f_2$  themselves!



- $f=Q^*\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]
  - $Q^* \in \mathcal{G} \longleftarrow Q^* \in \{f_1, f_2\} \subseteq \mathcal{G}$
  - *G* is piecewise constant
- Where can we find such a magical *G*?
  - out of  $f_1$ ,  $f_2$  themselves!



- $f=Q^*\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]
  - $Q^* \in \mathcal{G} \longleftarrow Q^* \in \{f_1, f_2\} \subseteq \mathcal{G}$
  - *G* is piecewise constant
- Where can we find such a magical *G*?
  - out of  $f_1$ ,  $f_2$  themselves!
  - $O(1/\varepsilon^2)$  complexity



- $f=Q^*\Leftrightarrow \|f-\mathcal{T}_{\mathcal{G}}f\|=0$ , where  $\mathcal{T}_{\mathcal{G}}f$  is  $\mathcal{T}f$  projected onto a function space G satisfying [Gordon'96]
  - $Q^* \in \mathcal{G} \longleftarrow Q^* \in \{f_1, f_2\} \subseteq \mathcal{G}$
  - *G* is piecewise constant
- Where can we find such a magical G?
  - out of  $f_1$ ,  $f_2$  themselves!
  - $O(1/\varepsilon^2)$  complexity
- Extend to exponentially many candidates by pairwise comparison ("tournament")

