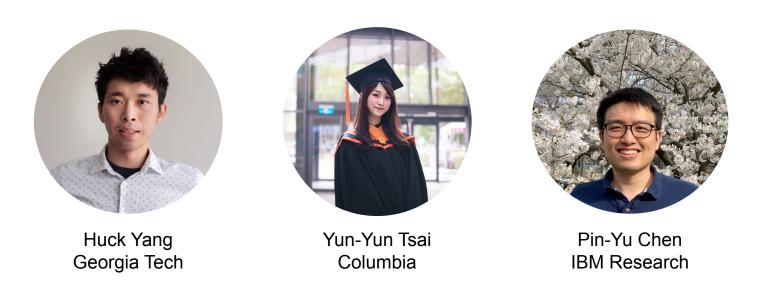

Paper ID 154

ICML | 2021 Thirty-eighth International Conference on Machine Learning

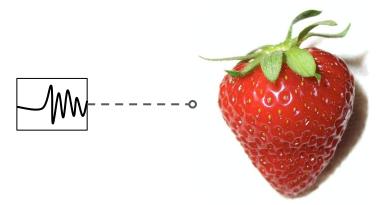
Voice2Series: Reprogramming Acoustic Models for Time Series Classification



International Conference on Machine Learning (ICML), July, 2021

Huck Yang Georgia Institute of Technology, USA

Paper ID 154


Team

Feel free to contact us for collaboration. (huckiyang@gatech.edu)

Challenges of Applying Deep Learning for Time Series

Time Series Samples are Shallow and often **Insufficient** "Strawberry" Dataset (e.g., Spectrum)

(Holland et al., 1998) and Image Source: UCR Archive

From "Speech" Model to "Time Series" Model?

Speech Corpora and Acoustic Models

- Large-Scale Training Data (>100k Samples)
- Power of Deep Representation Learning
- Domain Difference (e.g., Phonetic Information)

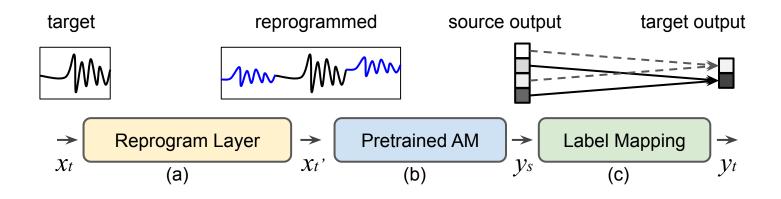
Some Efforts in Transfer Learning for Time Series Classification

- Pretrained on Different Time Series Model [D1, D2]

What is Model (Adversarial) Reprogramming?

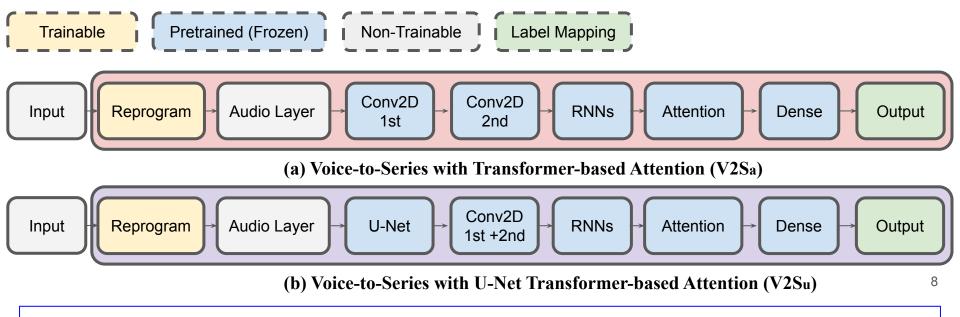
Reprogramming works for Image to Image Classification (*Elsayed et al. 2018*)

- Training Weights (Perturbation) and Freeze a Pretrained Model


Reprogramming for a MNIST Classifier

Our Contributions in this Work

- 1. We propose Voice-to-Series (V2S). To the best of our knowledge, V2S services as the **first** method that enables reprogramming for time series tasks.
- Tested on a standard UCR time series classification benchmark with 30 different univariate tasks, V2S outperforms or is tied with the best reported results on 20 datasets and improves their average accuracy by 1.84%.
- 3. We develop a **theoretical risk analysis**, which can be used to assess the performance of reprogramming.


I. Introduce Voice-to-Series (V2S)

- Schematic illustration of the proposed Voice-to-Series

I. Voice-to-Series (V2S) Design

- Schematic illustration of the proposed Voice-to-Series

Open Source Implemented Layer and Code: https://github.com/huckiyang/Voice2Series-Reprogramming

I. Voice-to-Series (V2S) Performance on UCR Archive

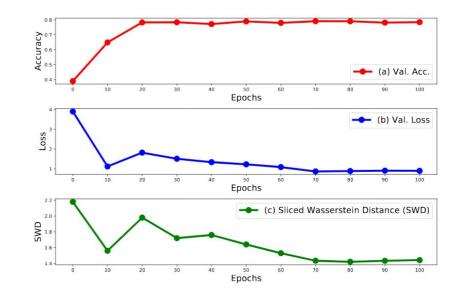
Dataset	Туре	Input size	Train. Data	Class	SOTA	V2S _a	V2S _u	TFa
Coffee	SPECTRO	286	28	2	100	100	100	53.57
DistalPhalanxTW	IMAGE	80	400	6	79.28	79.14	75.34	70.21
ECG 200	ECG	96	100	2	90.9	100	100	100
ECG 5000	ECG	140	500	5	94.62	93.96	93.11	58.37
Earthquakes	SENSOR	512	322	2	76.91	78.42	76.45	74.82
FordA	SENSOR	500	2500	2	96.44	100	100	100
FordB	SENSOR	500	3636	2	92.86	100	100	100
GunPoint	MOTION	150	50	2	100	96.67	93.33	49.33
HAM	SPECTROM	431	109	2	83.6	78.1	71.43	51.42
HandOutlines	IMAGE	2709	1000	2	93.24	93.24	91.08	64.05
Haptics	MOTION	1092	155	5	51.95	52.27	50.32	21.75
Herring	IMAGE	512	64	2	68.75	68.75	64.06	59.37
ItalyPowerDemand	SENSOR	24	67	2	97.06	97.08	96.31	97
Lightning2	SENSOR	637	60	2	86.89	100	100	100
MiddlePhalanxOutlineCorrect	IMAGE	80	600	2	72.23	83.51	81.79	57.04
MiddlePhalanxTW	IMAGE	80	399	6	58.69	65.58	63.64	27.27
Plane	SENSOR	144	105	7	100	100	100	9.52
ProximalPhalanxOutlineAgeGroup	IMAGE	80	400	3	88.09	88.78	87.8	48.78
ProximalPhalanxOutlineCorrect	IMAGE	80	600	2	92.1	91.07	90.03	68.38
ProximalPhalanxTW	IMAGE	80	400	6	81.86	84.88	83.41	35.12
SmallKitchenAppliances	DEVICE	720	375	3	85.33	83.47	74.93	33.33
SonyAIBORobotSurface	SENSOR	70	20	2	96.02	96.02	91.71	34.23
Strawberry	SPECTRO	235	613	2	98.1	97.57	91.89	64.32
SyntheticControl	SIMULATED	60	300	6	100	98	99	49.33
Trace	SENSOR	271	100	4	100	100	100	18.99
TwoLeadECG	ECG	82	23	2	100	96.66	97.81	49.95
Wafer	SENSOR	152	1000	2	99.98	100	100	100
WormsTwoClass	MOTION	900	181	2	83.12	98.7	90.91	57.14
Worms	MOTION	900	181	5	80.17	83.12	80.34	42.85
Wine	SPECTRO	234	57	2	92.61	90.74	90.74	50
Mean accuracy (†)	-	-	-	-	88.02	89.86	87.92	56.97
Median accuracy ([†])	-	-	-	-	92.36	94.99	91.40	53.57
MPCE (mean per class error) (\downarrow)	-	14		-	2.09	2.01	2.10	48.34

Table 2. Performance comparison of test accuracy (%) on 30 UCR time series classification datasets (Dau et al., 2019). Our proposed $V2S_a$ outperforms or ties with the current SOTA results (discussed in Section 5.3) on 20 out of 30 datasets.

Achieve or outperform SOTA in 20 out of 30 datasets

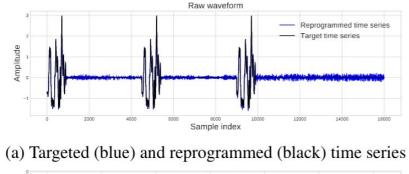
II. Proposed Theoretical Analysis for Reprogramming

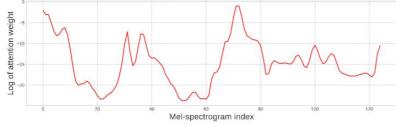
- Population Risk via Reprogramming (Optimal Transport)


Theorem 1: Let δ^* denote the learned additive input transformation for reprogramming. The population risk for the target task via reprogramming a *K*-way source neural network classifier $f_{\mathcal{S}}(\cdot) = \eta(z_{\mathcal{S}}(\cdot))$, denoted by $\mathbb{E}_{\mathcal{D}_{\mathcal{T}}}[\ell_{\mathcal{T}}(x_t + \delta^*, y_t)]$, is upper bounded by:

$$\mathbb{E}_{\mathcal{D}_{\mathcal{T}}}[\ell_{\mathcal{T}}(x_t + \delta^*, y_t)] \leq \underbrace{\epsilon_{\mathcal{S}}}_{\text{source risk}} + 2\sqrt{K} \cdot \underbrace{\mathcal{W}_1(\mu(z_{\mathcal{S}}(x_t + \delta^*)), \mu(z_{\mathcal{S}}(x_s)))_{x_t \sim \mathcal{D}_{\mathcal{T}}, x_s \sim \mathcal{D}_{\mathcal{S}}}}_{\text{representation alignment loss via reprogramming}}$$

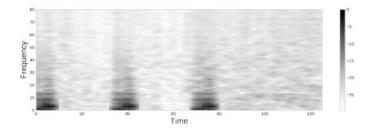
This results suggest that reprogramming can perform **better** (lower risk) when the source model has a lower source loss and smaller representation loss.

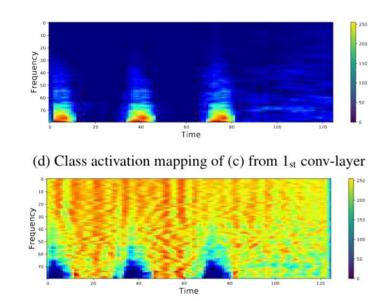

II. Proposed Theoretical Analysis for Reprogramming


- Training-time reprogramming analysis using V2S and DistalPhalanxTW dataset (Davis, 2013)

III. Voice-to-Series (V2S) Visualization - (1)

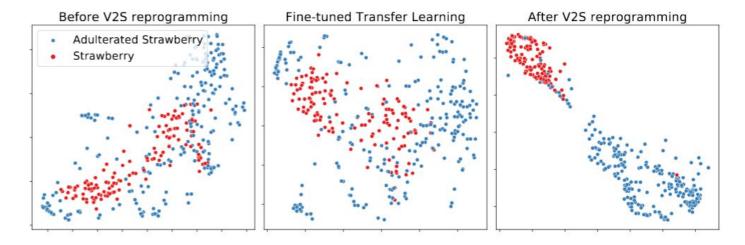
- Proposed Voice-to-Series on the Worms dataset (Bagnall et al., 2015)




(b) Attention weight of reprogrammed input

III. Voice-to-Series (V2S) Visualization - (2)

- Proposed Voice-to-Series on the Worms dataset (Bagnall et al., 2015)


(c) Mel-spectrogram of reprogrammed input

(e) Class activation mapping of (c) from 2_{nd} conv-layer

III. Voice-to-Series (V2S) Visualization - (3)

- tSNE plots of the logit representations using the Strawberry (Holland et al., 1998)

Future Work - Different Time Series (e.g., Regression) and Speech Processing Tasks.

Acknowledgement

A. Large-Scale Pretrained Speech and Acoustic Models

- 1. *Choi et al.* "Kapre: On-GPU Audio Preprocessing Layers for a Quick Implementation of Deep Neural Network Models," *ICML Workshop* 2017
- 2. Yang *et al.* "Decentralizing feature extraction with quantum convolutional neural network for automatic speech recognition," *ICASSP 2021*, <u>Code</u>
- 3. *Hu et al.* "A Two-Stage Approach to Device-Robust Acoustic Scene Classification," *ICASSP 2021, DCASE 20 Task-1 Best System,* <u>Code</u>
- **B. Time Series Classification**
- 1. Wang et al. "Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline," IJCNN 2019
- 2. Dau et al. "The UCR Time Series Archive," IEEE/CAA Journal of Automatica Sinica

References

C. Adversarial Reprogramming

- 1. Elsayed et al. "Adversarial reprogramming of neural networks," ICLR 2018
- 2. *Tsai et al.* "Transfer learning without knowing: Reprogramming black-box machine learning models with scarce data and limited resources," *ICML 2020*
- 3. Neekhara et al. "Adversarial Reprogramming of Text Classification Neural Networks," *EMNLP 2019*

D. Transfer Learning in Time Series Classification

- 1. *Fawaz et al.* "Transfer learning for time series classification" *Big Data 2018*
- 2. *Kashiparekh et al.* "ConvTimeNet: A pre-trained deep convolutional neural network for time series classification. *IJCNN 2019*