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Challenges of Applying Deep Learning for Time Series

Time Series Samples are Shallow and often Insufficient
“Strawberry” Dataset (e.g., Spectrum)

(Holland et al., 1998) and Image Source: UCR Archive



From “Speech” Model to “Time Series” Model?

Speech Corpora and Acoustic Models

Large-Scale Training Data (>100k Samples)
Power of Deep Representation Learning
Domain Difference (e.g., Phonetic Information)

Some Efforts in Transfer Learning for Time Series Classification
Pretrained on Different Time Series Model [D1, D2]



What is Model (Adversarial) Reprogramming?

Reprogramming works for Image to Image Classification (Elsayed et al. 2018)

- Training Weights (Perturbation) and Freeze a Pretrained Model

Inception V3

ImageNet model Seven

Reprogramming for a MNIST Classifier



Our Contributions in this Work

We propose Voice-to-Series (V2S). To the best of our knowledge, V2S services
as the first method that enables reprogramming for time series tasks.

Tested on a standard UCR time series classification benchmark with 30 different
univariate tasks, V28 outperforms or is tied with the best reported results on 20
datasets and improves their average accuracy by 1.84%.

We develop a theoretical risk analysis, which can be used to assess the
performance of reprogramming.



l. Introduce Voice-to-Series (V2S)

- Schematic illustration of the proposed Voice-to-Series
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l. Voice-to-Series (V2S) Design

- Schematic illustration of the proposed Voice-to-Series

Input )HReprogram ]—[Audlo Layer ]—[ Co1r1s\;[2D ]—[ Conv2D ]—[ RNNs ]—[ Attention ]—[ Dense ]—[ Output ]

(a) Voice-to-Series with Transformer-based Attention (V2Sa)

[ Input )EReprogram ]—[Audio Layer ]—[ U-Net ]—[ 103?1\/225]—[ RNNs ]—[ Attention ]—[ Dense ]—[ Output ]

(b) Voice-to-Series with U-Net Transformer-based Attention (V2Su) 8

Open Source Implemented Layer and Code: https://github.com/huckiyang/Voice2Series-Reprogramming
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l. Voice-to-Series (V2S) Performance on UCR Archive

Table 2. Performance comparison of test accuracy (%) on 30 UCR time series classification datasets (Dau et al., 2019). Our proposed
V28, outperforms or ties with the current SOTA results (discussed in Section 5.3) on 20 out of 30 datasets.

Dataset Type Input size | Train. Data | Class | SOTA | V2S, | V2§, | TF,

Cotfee SPECTRO 286 28 2 100 100 100 | 53.57

DistalPhalanxTW IMAGE 80 400 6 79.28 | 79.14 | 75.34 | 70.21

ECG 200 ECG 96 100 2 90.9 100 100 100

ECG 5000 ECG 140 500 5 94.62 | 93.96 | 93.11 | 58.37

Earthquakes SENSOR 512 322 2 76.91 | 78.42 | 76.45 | 74.82

FordA SENSOR 500 2500 2 96.44 | 100 100 100

FordB SENSOR 500 3636 2 92.86 | 100 100 100

GunPoint MOTION 150 50 2 100 96.67 | 93.33 | 49.33

HAM SPECTROM 431 109 2 83.6 78.1 | 71.43 | 51.42

HandOutlines IMAGE 2709 1000 2 93.24 | 93.24 | 91.08 | 64.05

Haptics MOTION 1092 155 5 51.95 | 52.27 | 50.32 | 21.75 1
Herring IMAGE 512 64 2 68.75 | 68.75 | 64.06 | 59.37 ACh ieve or
TtalyPowerDemand SENSOR 24 67 2 | 97.06 | 97.08 | 9631 | 97 outpe I'fO rm S OTA in
Lightning2 SENSOR 637 60 2 86.89 | 100 100 100

MiddlePhalanxOutlineCorrect IMAGE 80 600 2 | 7223 | 8351 | 81.79 | 57.04 20 out of 30 datasets
MiddlePhalanxTW IMAGE 80 399 6 58.69 | 65.58 | 63.64 | 27.27

Plane SENSOR 144 105 7 100 100 100 9.52

ProximalPhalanxOutlineA geGroup IMAGE 80 400 3 88.09 | 88.78 | 87.8 | 48.78

ProximalPhalanxOutlineCorrect IMAGE 80 600 2 92.1 | 91.07 | 90.03 | 68.38

ProximalPhalanxTW IMAGE 80 400 6 81.86 | 84.88 | 83.41 | 35.12

SmallKitchenAppliances DEVICE 720 375 3 85.33 | 83.47 | 74.93 | 33.33

SonyAIBORobotSurface SENSOR 70 20 2 96.02 | 96.02 | 91.71 | 34.23

Strawberry SPECTRO 235 613 2 98.1 | 97.57 | 91.89 | 64.32

SyntheticControl SIMULATED 60 300 6 100 98 99 49.33

Trace SENSOR 271 100 4 100 100 100 | 18.99

TwoLeadECG ECG 82 23 2 100 96.66 | 97.81 | 49.95

Wafer SENSOR 152 1000 2 99.98 100 100 100

WormsTwoClass MOTION 900 181 2 83.12 | 98.7 | 9091 | 57.14

Worms MOTION 900 181 5 80.17 | 83.12 | 80.34 | 42.85

Wine SPECTRO 234 57 2 92.61 | 90.74 | 90.74 50

Mean accuracy (1) - - - - 88.02 | 89.86 | 87.92 | 56.97

Median accuracy (1) - - - - 92.36 | 94.99 | 91.40 | 53.57

MPCE (mean per class error) (1) - - - - 2.09 | 2.01 2.10 | 48.34




Il. Proposed Theoretical Analysis for Reprogramming

- Population Risk via Reprogramming (Optimal Transport)

Theorem 1: Let 0* denote the learned additive input transformation for reprogramming. The
population risk for the target task via reprogramming a K-way source neural network classifier
fs(-) =n(zs(-)), denoted by Ep_ [¢7(x¢ + 6*,y¢)], is upper bounded by:

Ep [lr(z: + 0", y1)] < €s +2VK - E/VI(N(ZS(J& 44" ) )5 25 @) Vrpitie, zs~Ds

. B 3
source risk representation alignment loss via reprogramming

This results suggest that reprogramming can perform better (lower risk) when
the source model has a lower source loss and smaller representation loss.




Il. Proposed Theoretical Analysis for Reprogramming

- Training-time reprogramming analysis using V2S and DistalPhalanxTW dataset
(Davis, 2013)
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lll. Voice-to-Series (V2S) Visualization - (1)

- Proposed Voice-to-Series on the Worms dataset (Bagnall et al., 2015)

Raw waveform

—— Reprogrammed time series
—— Target time series

Amplitude

12000
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Sample index

(a) Targeted (blue) and reprogrammed (black) time series

Log of attention weight

Mel-spectrogram index

(b) Attention weight of reprogrammed input
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lll. Voice-to-Series (V2S) Visualization - (2)

Frequency

Proposed Voice-to-Series on the Worms dataset (Bagnall et al., 2015)

(c) Mel-spectrogram of reprogrammed input
o
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(d) Class activation mapping of (c¢) from I conv-layer
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(e) Class activation mapping of (c) from 2,4 conv-layer
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lll. Voice-to-Series (V2S) Visualization - (3)

- tSNE plots of the logit representations using the Strawberry (Holland et al.,

Before V2S reprogramming

Fine-tuned Transfer Learning

After V2S reprogramming
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Future Work - Different Time Series (e.g., Regression) and Speech Processing Tasks.
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