

CATE: Computation-aware Neural Architecture Encoding with Transformers

Shen Yan, Kaiqiang Song, Fei Liu, Mi Zhang Michigan State University, Tencent AI Lab, University of Central Florida

https://arxiv.org/abs/2102.07108

June 20th, 2021

1

Neural Architecture Search (NAS) Pipeline

Structure-aware encodings: Adjacency matrix-based

One-hot adjacency encoding of NAS-Bench-101

One-hot adjacency encoding of NAS-Bench-201

Structure-aware encodings: Adjacency matrix-based

One-hot adjacency encoding of a DARTS cell

Structure-aware encodings: Adjacency matrix-based

Categorical adjacency encoding

Structure-aware encodings: LSTM/MLP/GCN

Different types of architecture encoders

Structure-aware encodings: Unsupervised Pre-training

Drawbacks of Structure-aware encodings

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen., D-VAE: A Variational Autoencoder for Directed Acyclic Graphs, NeurIPS 2019

Colin White, Willie Neiswanger, Sam Nolen, Yash Savani., A Study on Encodings for Neural Architecture Search, NeurIPS 2020

Computation-aware encodings: Path Encodings

One-hot / Categorical path encoding

Colin White, Willie Neiswanger, Sam Nolen, Yash Savani., A Study on Encodings for Neural Architecture Search, NeurIPS 2020

Advantages of Computation-aware Encodings

Computation-aware encodings: D-VAE

Our Proposed Method: CATE

Computationally similar architecture pair (X, Y)

Why Pairwise Sampling

Conv 3x3 -> Conv 1x1 -> Conv 5x5 -> Conv 1x1 -> Max Pool -> ... Conv 3x3 -> Conv 1x1 -> Conv 5x5 -> ? -> Max Pool -> ...

Computationally similar architecture pair (X, Y)

Attention Mask

Algorithm 1 Floyd Algorithm

- 1: Input: the node set \mathcal{V} , the adjacent matrix A
- 2: $\tilde{\mathbf{A}} \leftarrow \mathbf{A}$
- 3: for $k \in \mathcal{V}$ do
- 4: for $i \in \mathcal{V}$ do
- 5: for $j \in \mathcal{V}$ do
- 6: $ilde{\mathbf{A}}_{i,j} \mid = ilde{\mathbf{A}}_{i,k} \quad \& \quad ilde{\mathbf{A}}_{k,j}$
- 7: Output: A

$$\mathbf{M}_{i,j}^{Direct} = \begin{cases} 0, & \text{if } A_{i,j} = 1\\ -\infty, & \text{if } A_{i,j} = 0 \end{cases}$$
$$\mathbf{M}_{i,j}^{Indirect} = \begin{cases} 0, & \text{if } \tilde{A}_{i,j} = 1\\ -\infty, & \text{if } \tilde{A}_{i,j} = 0 \end{cases}$$

Computationally similar architecture pair (X, Y)

Encoding-dependent NAS Subroutines

12 different encodings:

- One-hot/Categorical/Continuous adjacency matrix encoding (3)
- One-hot/Categorical/Continuous path encoding (3)
- The truncated counterparts (3)
- D-VAE
- arch2vec
- CATE

3 NAS subroutine:

- Sample random architecture: random search
- Perturb architecture: regularized evolution, local search
- Train predictor: neural predictor, BO with GP, BO with DNGO

MICHIGAN STATE UNIVERSITY

Comparison between CATE and other encoding schemes

Comparison between CATE and other NAS methods

Evaluation on DARTS without surrogate models

Figure 4. Top: Best found cell from CATE-DNGO-LS given the budget of 100 samples. Bottom: Best found cell from CATE-DNGO-LS given the budget of 300 samples.

NAS Methods	Avg. Test Error (%)	Params (M)	Search Cost (GPU days)
RS (Li & Talwalkar, 2019)	3.29 ± 0.15	3.2	4
DARTS (Liu et al., 2019a)	2.76 ± 0.09	3.3	4
BANANAS (White et al., 2021)	2.67 ± 0.07	3.6	11.8
arch2vec-BO (Yan et al., 2020)	2.56 ± 0.05	3.6	9.2
CATE-DNGO-LS (small budget)	2.55 ± 0.08	3.5	3.3
CATE-DNGO-LS (large budget)	$\textbf{2.46} \pm \textbf{0.05}$	4.1	10.3

Table 2. NAS results in DARTS search space using CIFAR-10.

NAS Methods	Params (M)	Mult-Adds (M)	Top-1 Test Error (%)
SNAS (Xie et al., 2019b)	4.3	522	27.3
DARTS (Liu et al., 2019a)	4.7	574	26.7
BayesNAS (Zhou et al., 2019)	4.0	440	26.5
arch2vec-BO (Yan et al., 2020)	5.2	580	25.5
BANANAS (ours)	5.1	576	26.3
CATE-DNGO-LS (small budget)	5.0	556	26.1
CATE-DNGO-LS (large budget)	5.8	642	25.0

Table 3. Transfer learning results on ImageNet.

Evaluation on Outside Search Space

19

Ablation Study

Figure 6. Histogram of model parameters on NAS-Bench-101.

δ K	1	2	4	8
1×10^6	6.02	5.95	5.99	5.95
2×10^6	6.02	5.94	6.04	5.96
4×10^6	5.94	6.03	6.05	5.99
8×10^{6}	6.05	6.04	6.11	6.04

Table 4.	Effects	of δ	and	K	on	architecture	pair sam	pling

L_c	6	12	24
64	6.07	5.99	5.95
128	6.01	5.94	5.95
256	5.97	5.94	5.94

Table 5. Effects of L_c and d_{ff} on pretraining CATE.

Mask type	NAS-Bench-101	NAS-Bench-301	
Direct	6.03		
Indirect	5.94	5.30	

Table 6. Direct/Indirect dependency mask selection.

Conclusion

- A non-contrastive, pairwise pre-training method to learn computation-aware encodings with cross-attention Transformers
- Competitive under all encoding-dependent NAS subroutines in both small and large search spaces
- Superior generalization ability beyond the search space on which it was trained

For more detailed information and code, please refer to our paper: <u>https://arxiv.org/abs/2102.07108</u>

Thank You