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Motivation
● Differentiable articulated body simulation as a network layer

○ Control physical systems
○ Enhance reinforcement learning
○ Estimate physics parameters
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Applications
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Workflow of one simulation step
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Checkpointing
Forward and backward workflow with checkpointing scheme
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Checkpointing
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checkpoints Intermediate variables



Application with Reinforcement Learning
● Sample enhancement

○ Increase sample efficiency

○ Faster convergence

● Policy enhancement

○ Update the policy using analytic gradients

○ Better scalability in high dimensionality
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Sample Enhancement
● Idea: Use simulation gradients to generate extra nearby examples

● Point sample → patch sample

○ Faster convergence

a: action
s: observation
s’: next-step observation
r: reward

Enabled by differentiable simulation!

14



Policy Enhancement
● Idea: Use simulation gradients to compute better policy gradients

● Use one-step rollout to approximate the action gradients

Soft Actor-Critic Ours

a: action
s: observation
s’: next-step observation
r: reward
Q: critic network
μ: policy network
Z: regularization term

Enabled by differentiable simulation!
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Results - Performance
● Compare the runtime and memory usage.

● Scene: One Laikago released from the air and hitting the ground

○ Scale the simulation length: 50, 100, 500, 1000, 5000 steps

● Comparisons:

○ Use autodiff tools in the same simulation pipeline
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Results - Performance
● Compare the runtime and memory usage.

● Scene: A Laikago released from the air and hitting the ground

● Our method has the highest speed and the lowest memory usage

○ x10 faster than autodiff tools with 1% of memory usage

18Peak Memory (MB)Forward simulation time (ms) per step



Policy Enhancement
● Scenario: N-link pendulum

● Objective: reaching the highest point within 100 frames

● Reward

○ -dist_to_target^2

● Baseline: MBPO, SAC, SQL, PPO

● Number of links: 1-7

● Number of training epochs: 100 * n_links

○ Samples per epoch: 100 19



Policy Enhancement
● Test metric: Best relative reward

○ Absolute reward / maximum possible reward (reaching exactly the target)

Our method scales with increasing system complexity 20



Sample Enhancement
● Scenario: Mujoco Ant

● Objective: walking towards +x axis

● Reward

○ v_x - sum(action^2)

● Baseline: MBPO, SAC, SQL, PPO

● Number of training epochs: 100

○ Samples per epoch: 1000
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Sample Enhancement
● Test metric:

○ Maximum (absolute) reward

22Our method achieves the same best reward and converges faster
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Thanks for your attention!
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