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Motivation

e Differentiable articulated body simulation as a network layer
o  Control physical systems
o Enhance reinforcement learning
o Estimate physics parameters
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Workflow of one simulation step
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Checkpointing

Forward and backward workflow with checkpointing scheme
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Checkpointing
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Application with Reinforcement Learning

e Sample enhancement
o Increase sample efficiency
o Faster convergence

e Policy enhancement

o Update the policy using analytic gradients

o Better scalability in high dimensionality
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Sample Enhancement

e |dea: Use simulation gradients to generate extra nearby examples

e Point sample — patch sample

o Faster convergence
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Enabled by differentiable simulation!

a: action

s: observation

s’: next-step observation
r: reward



Policy Enhancement

e I|dea: Use simulation gradients to compute better policy gradients

e Use one-step rollout to approximate the action gradients
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Soft Actor-Critic

Ours

a: action Enabled by differentiable simulation!

s: observation

s’: next-step observation
r: reward

Q: critic network

J: policy network

Z: regularization term
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Results - Performance

e Compare the runtime and memory usage.
e Scene: One Laikago released from the air and hitting the ground
o Scale the simulation length: 50, 100, 500, 1000, 5000 steps

e Comparisons: -

o Use autodiff tools in the same simulation pipeline
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Results - Performance

Scene: A Laikago released from the air and hitting the ground

Our method has the highest speed and the lowest memory usage

Compare the runtime and memory usage.
o  x10 faster than autodiff tools with 1% of memory usage

steps 50 100 500 1000 5000

ADF 25.7 25.5 25.1 32.1 58.4
Ceres 27.2 27.5 272 34.0 58.2
CppAD 2.4 2.4 2.3 2.3 4.5
JAX 53.3 46.1 43.1 42.7 42.3
PyTorch 195.6 192.2 199.2 192.8 N/A

Ours 0.3 0.3 0.2 0.2 0.2

steps 50 100 500 1000 5000

ADF 25.7 25.5 25.1 32.1 58.4
Ceres 27.2 27.5 27.2 34.0 58.2
CppAD 24 24 2.3 2.3 4.5
JAX 53.3 46.1 43.1 42.7 42.3
PyTorch 195.6 192.2 199.2 192.8 N/A

Ours 0.3 0.3 0.2 0.2 0.2

Forward simulation time (ms) per step

Peak Memory (MB)
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Policy Enhancement

e Scenario: N-link pendulum
e Objective: reaching the highest point within 100 frames

e Reward
o -dist_to_target"2

e Baseline: MBPO, SAC, SQL, PPO

e Number of links: 1-7

e Number of training epochs: 100 * n_links

o Samples per epoch: 100 19



Policy Enhancement

e Jest metric: Best relative reward

o Absolute reward / maximum possible reward (reaching exactly the target)
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Our method scales with increasing system complexity 20



Sample Enhancement

Scenario: Mujoco Ant
Objective: walking towards +x axis
Reward
o V_x - sum(action”2)
Baseline: MBPO, SAC, SQL, PPO

Number of training epochs: 100

o Samples per epoch: 1000




Sample Enhancement

Test metric:
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Our method achieves the same best reward and converges faster
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Thanks for your attention!
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