MOTS: Minimax Optimal Thompson Sampling
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Multi-Armed Bandits (MAB)

» Sequential decision process with an agent, a set of arms {1,..., K}, and
an environment that emits rewards.

e Eacharma € {1,...,K} leads to a
reward following a 1-subGuassian
distribution with mean ..

e Goal: minimize the regret due to not
knowing the best arm
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Thompson Sampling Type Algorithms

The general prototype of TS-type algorithms:

For each arm 1 € | K|, maintain a prior distribution for the mean reward
Forr=1,2,... do
For each arm 1 € | K], sample 0,(7) independently from the prior

Play arm A, = arg max 0,(¢)
i€[K]

For each arm 1 € | K|, update the mean and variance of the prior
end
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Thompson Sampling

The original Thompson Sampling algorithm

For each arm 1 € |K], set 1,(0) = 0, 7,(0) = 0. Play each arm once.
Fort=K+ 1,K+2.,...do
For each arm i € [K|, sample 0.(7) independently from ./ (fi(1),1/T(¢))

Play arm A, = arg max 6.(r)
i€[K] |
1(1) - ﬂi(t) T 7 1{i = At}
1) + 11 = Ay}
I'c+1)=T.)+1{i=A,}

Foreacharm i1 € [K |, update fi(t+ 1) =

end
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Regret Bound of Thompson Sampling

. TS with Beta priors has an O(y/ KT log T') regret,
and TS with Gaussian priors has an O(y/ KT log K) regret.

* The existing best regret bound for Thompson sampling does not exactly
match the minimax optimal regret €2(1/ KT') for MAB

* |t remains an open problem whether TS type algorithms can
achieve the minimax optimal regret bound £2(\/ KT') for MAB problems
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MOTS: Minimax Optimal Thompson Sampling

Use a clipped Gaussian distribution as the prior distribution for 6.(¢)

Foreacharm i € [K], set 1,(0) =0, 7(0) =0
Forr=1,2,... do |
For each arm i € [K], sample 0.(1) from ./ cliPPed( (1), 1/T (1))

Play arm A, = arg max 0,(¢)
i€[K] |
1(0) - p(t) +r, - 1{i = At}

Foreacharm i € | K|, update ji(t+ 1) =
[K], update i,(z + 1) T+ 1

It+1)=ToH+1{i=A4A}
end
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MOTS: Minimax Optimal Thompson Sampling

Use a clipped Gaussian distribution as the prior distribution for 6.(¢)

Step 1: sample 8.(¢) from W (i(£),1/(pT(1)))
Clipped Gaussian distribution

Inflation parameter p is used to avoid the

of the optimal arm
sample @.(¢) from

Step 2: obtain 6.(¢) as min{0,(?), 7,(1)}

Clipping threshold = 0.(1) + lo
ipping thresho . |
J l Tl(f) g KTl(t)

IS used to avoid the of suboptimal arms

/VClipped(ﬂi(t),l/Y}(t))

International Conference
On Machine Learning



Regret Bound of MOTS

Theorem: For any fixed p € (1/2,1) and a > 4, the regret of MOTS is
K
R(T)=O| VKT + ) A,
i=1

* In comparison, TS with Beta priors has an

O/ KT log T') regret, and TS with Gaussian priors

has an O(1/ KT log K) regret

e MOTS is the first TS-type algorithm that matches the minimax optimal
regret L2(\/ KT) for MAB A ICML
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Experimental Results

Set up: K arms, each one has a reward distribution 4 (u;,1),1 =1,...,K

* the set of numbers in each setting is the mean reward for each arm respectively
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Thank You

Paper: MOTS: Minimax Optimal Thompson Sampling

International Conference
On Machine Learning



