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Unsupervised Multi-Source Domain Adaptation (UMDA)

/ \ ."‘. %“
| —1 |V < Minimizing

x X [V\ R
%'2 H-divergence

X aip - Target Domain
X oo X % Shify \/\ .o ', . Source Domain /->

\00.00 * %

Source Domain

® 040
/ \Target DO% Input Feature Space Latent Space

[The prevailing unsupervised multi-source domain adaptation (UMDA) paradigm.]
Synthetic Source (Train)

aempl:;, 5 ”b'cyd}@ Theorem 1 Let H be the model space, {ep (h)}E_ | and
w 2 e 7ol en, (h) be the task risks of source domains {]D) & and
Lo P the target domain Dr, and o« € RE S0 ap = 1 be the

domain weights. Then for all h € H we have:
Task loss H -divergence

%« SIAE N
R o (h) <3 (%(h)+dﬁD§,DT))+Ao 3)

Synthesized Data: Cheap Real Data: Expensive and

and Abundant Scarce : )
where \y = minyey Zszl agep (h) + epy(h) is a con-

stant according to the task risk of the optimal model on the
source domains and target domain.

[The Generalization Bound of UMDA.]

[Peng X et al. VisDA: The Visual Domain Adaptation Challenge, 2017.]
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Unsupervised Multi-Source Domain Adaptation (UMDA)

How to optimize the H-divergence?

oL,
20, Closs L
s . . Making features from different
g |$ ﬂ ﬂ |f‘> E('lass label y ® Adversarial Learnlng dorr?ains undistinguished
" Tabel predicior Gy (<6,) 1. Build domain classifier h € J with: /
&Qg domain classifier G4(-;04) dH(]DS:DT) — sup |EXi~DSI[h(Xi) _ 1] o EXiNDTI[h(Xi) _ 1”
+ Y &, % g d heH
feature extractor G¢(-;60y) % NG - L
YRS Yo, % E> a deenetins el o 2. Seek the classifier GgL(-, 04) that minimizing the loss of
6L - - g . _d
> ()Ld domain classifier: 172
forwardprop  backprop (and produced derivatives) d 3 Seek the feature mapplng Gf (a, ef) that maXimiZing the
. aps Lg
[Ganin Y et al. Unsupervised Domain Adaptation by Backpropagation (DANN), ICML 2015.] loss of domain classifier: _AE
6 - ® Maximum Mean Discrepancy (MMD)
@) O O O O O : 1. Build reproducing kernel Hilbert space (RKHS) H with kernel :
O frozen O frozen O frozen O f::; O ::lrfe O “:j:;j:; h(X) == (h(), K(', X))
O et>le->l s = et
O ° ° ° ° ¢ oupu 2. Write the equivalence H -divergence as
o 121 I3 3l 13l 13 (05, r) = suplh, [ 5l X5 ()~ (h, [ (., X)aPr (X))
, = sup K K,
9J..10]..19]..19]..|9]..|]° : x T
mput conv conv. conv3 con.

3. Minimize kernel MMD
[Long M et al. Learning Transferable Features with Deep Adaptation Networks, ICML 2015.] A (Ds, D7) = —2Ex, x,~0s,0r £(Xg, X7)
+ Ex, xtng (X5, Xg) + Ex, xt, op, 5(Xr, X7)




Domain Adaptation with Privacy-preserving Policy

General Data Protection Regulation (GDPR)

® Individual Rights Simply combining
source data is forbidden.

1. Right to be informed and accessible. Individuals have the right to be informed
about the collection and use of their personal data, such as the purposes of data /
analysis, with whom the data is shared, and the data collecting methods. If the
data is obtained from other sources, the privacy information must be
provided within one month. Individuals also have the right to access and receive
a copy of their personal data and other supplementary information Fomcas ey R R G B e i ecen ot

2. Right to object. Individuals have the right to object the directly usage in market.

[Individual rights in general data protection regulation,
https://ico.org.uk/for-organisations/guide-to-data-

3. Right to rectification and erasure. Ind!wdual,s have the right to rectify inaccurate orotection/quide-to-the-general-data-protection-
personal data. They also have rights to “forget” the influence of their data, such as regulation-gdpr/individual-rights.]
to be total deleted in databases and to control the impact in data-mining models.

4. Right to restrict processing and automated decision making. Individuals have the right to restrict the processing their personal data. The
automated profiling about evaluating certain things of individuals or making automated decisions about individuals without human
involvement must be authorized.
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Domain Adaptation with Privacy-preserving Policy

Data Residency Laws and Federated Learning B = =
\eas “ ; ata
v -: () Model Server
® Corporate Responsibilities u P
Data localization or residency refers to the data location's physical Target Domain ﬂwdme ;...5.“1-)7{7{?‘{"?,.(::11;
séorage within a country's national boundaries. For European Union, [ Aggregated Gradient with ]
ompanies have to keep the data inside the EU. Data can only be Dynamic Attention =

conditionally transferred to countries and organizations that have signed
up to equivalent privacy protection as EU.

Regulated data types: Profile; Finance; Employment; Health, Payment.

® Solutions: Federated Learning

Federated learning (FL) is a machine learning setting where many clients Source @ D [Federated Average.]
(e.g. mobile devices or whole organizations) collaboratively train a
model under the orchestration of a central server (e.g. service provider),

while keeping the training data decentralized. [Peng X, et al. Federated adversarial
domain adaptation (FADA), ICLR 2020.]
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Domain Adaptation with Privacy-preserving Policy

clipart  painting real sketch quickdraw infograph
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Problem Formulation for Decentralized Scenario

ow

¢

1. All the data and computations on source domains must be kept localized.

2. Available information in each communication round:

® The size of the training sets {NX}X_, on source domains.
® The parameters of K models {h¥}¥_, trained on source domains. .
® The target domain data containing N, unlabeled examples D = {XiT}’l.Vle. [DomainNet Dataset.]

basketball tornado

Tusk Loss DP Domain identifier:
» Class identifier -

: Disentangler -

Challenges for Decentralized UMDA

Y ' |I Reconstructor
- - . . . . . éi 9 = S : a ?Domain-inmriam;
1. Minimizing the -divergence requires pairwise calculation of data. S , ;m Do e’
S Cross-Entropy - eature

. . . . ; Source/Target o §<+) le: m;}' o

2. The communication cost and privacy security. B s i
L, Adversarial ax-Entropy Domain Alignment :

] \ ‘ Domain : ) Task .

3. The negative transfer problem. T Alignment o Disenangle

[Peng X, et al. Federated adversarial domain adaptation (FADA), ICLR 2020.]
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Domain Adaptation with Privacy-preserving Policy
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Problem Formulation for Decentralized Scenario

ow
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1. All the data and computations on source domains must be kept localized.

2. Available information in each communication round:

® The size of the training sets {NX}X_, on source domains.
® The parameters of K models {h¥}¥_, trained on source domains.

. . . N
® The target domain data containing N, unlabeled examples D = {Xl-T}l.le.

basketball tornado

: ¥ § 0 RN
Challenges for Decentralized UMDA | D1 backbone L | ¢ | %' (%] = S
source data l 1 I 1 i’

—————————— - h Jp——
1. Minimizing the H -divergence requires pairwise calculation of data. RN foomemarg,  dasfal {oo.
. . . . IE """""" \ i —t -
2. The communication cost and privacy security. vl [ w/
[ >: backbone E> E E :|:>| (l: V\\I: |:>i|
) target data | I : NIr [

3. The negative transfer problem. A ___-=C >

feature extractor g, classifier h, = h,

[Liang J, et al. Do we really need to access the source data? Source hypothesis

transfer for unsupervised domain adaptation (SHOT), ICML 2020.]
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Our Decentralized UMDA Paradigm: KD3A
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KD3A: Using Three Components in Tandem to
Solve the Decentralized UMDA Challenges

1. Knowledge vote: producing high-quality domain consensus on Dy

Consensus

Knowledge 2. Consensus focus: against negative transfer

1) [l et
[I n I]I]., Ensemble P
- 1]
Deen| N ‘

3. BatchNorm MMD: decentralized optimization of H-divergence

Knowledge Distillation: Extending Source Domains

with Consensus Knowledge
\ ‘ qt | 09 0.1
m N 1. Get an extended source domain DX** as D! = (X7, p, )},
- x| gt | 04 0.6
XTI eDy ) . . .
. 2. Train the extended source model h¥*1 through knowledge distillation

{ Step 1: confidence

gate > 0.9 IOSS as Lkd( T q§+1) = DKL(szqg_‘_l(XzT))

70
Step 3: mean Step 2: consensus
ensemble class = stairs stairs  floors

2 ¥ g los 01 : ; — VK+1 k
m e TR i Tosr ons 3. Target model is the aggregation of source models as hy := Y, 27 ay hg
Ny, = 2 .qf 092 008 | %|qd | 002 098
’ (b) Knowledge vote ensemble, 4. The related task risk for DE*1: eprsi(h) = x )PTDK ., [MX) # arg, maxp.].
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Our Decentralized UMDA Paradigm: KD3A
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KD3A: Using Three Components in Tandem to Solve
the Decentralized UMDA Challenges

1. Knowledge vote: producing high-quality domain consensus on Dy

N

Consensus
Knowledge 2 .

[I = SI] | Ensemble Py
L) ™~
3.

Knowledge Distillation: Extending Source Domains

Consensus focus: against negative transfer

BatchNorm MMD: decentralized optimization of A -divergence

with Consensus Knowledge
~ 05 o
N qi 092 008 Proposi'tion 1 (The generalization bound for knowledge Notice: the new domain D§<+1
2N @ "(;0: 00958 distillation). Let H be the model space and €pK+ (h) be can improve the original bound
qs B .
X[ ey . the task risk. of rhef new source domain D?Jrl based on jf the consensus knowledge is
( P 0o knowledge distillation. Then for all hy € H, we have: good enough to represent the
Step 3: n:l;an Ste]lJaZ: contse.nsus - " h < h 1 d DK+1 D ground'truth Iabel, that IS
ensemble class = stairs stairs 00rs € € _I_ — ,
- ¥ Tl o9 o1 DT( T) = ]D)IS{+1( T) 9 71’.&?1’,( S T) (4) SUD,cy |E]D)T(h') — EpK+1 (h)l < Ay
p: | 091 0.09 L] 09 0.1 %1092 0.08 : . S
Ny, =2 Z§ 092 0.8 X Z:? 002 098 + mln{)\l’ SE?I-)L |ED§+1 (h) Dr (h)|}

(b) Knowledge vote ensemble.
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Our Decentralized UMDA Paradigm: KD3A
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Knowledge Vote: Producing Good Consensus

{

&
<

5 Main motivation: if a certain consensus knowledge is supported by more source
domains with high confidence (e.g., > 0.9), it will be more likely to be the true label.

Consensus

Ensemble "“°Z_'edge Three steps:
A '

1. Confidence gate. For each X! € D, we use a high-level confidence gate to filter the

(a) Knowledge distillation process in UMDA. predictions {g¥(XT)}¥_, of teacher models and eliminate the unconfident models.
1 2
. qq, f.;:f(? . 2. Consensus class vote. For the remained models, the predictions are added up to find the
i BN consensus class with the maximum accumulated confidence. Then the inconsistent models
~ ﬂ E @0 o are dropped.
! g% | 092 008
2N N+ g2 | 002 o098 _
X D, % at |04 06 3. Mean ensemble is conducted after the class vote to get the consensus knowledge p;. The
Step 1 confidence number of domains that support p; is also recorded as n, . For those X" with all teacher
( gate 2 0.9 models eliminated by confidence gate, the na'we mean ensemble are conducted on all teachers
Step 3: moan S e — to get p and a low weight is assigned to X" as n,, = 0.001.
2 D 0.1
p 091009 @05 o1 | gt [ose oo Knowledge vote builds DX = {(X7, p;, n,,. )}, with the loss objective:
ny, =2 g% | 092 008 x| q? | 002 0098

LM(X] . q) = np, - Dxr(pilla(X]))

(b) Knowledge vote ensemble
@ Visual Analytics Group | State Key Lab of CAD&CG, Zhejiang University




Our Decentralized UMDA Paradigm: KD3A

Consensus Focus: Against Negative Transfer [ Aggregated Gradient with J
Dynamic Attention

Domain weight a determine the contribution of each source domain. To get better
UMDA performance, we should assign the low weights to bad source domains.

® Previous methods: utilizing H -divergence to re-weight source domains and

identify irrelevant sources.

. X Notice: requires pairwise calculation.
_ —dy (DY Dy —dy (D% Dy AU o ;
ap = Nie (D5 )/ E Nye (Ds.Br), Can not identify malicious domain!
k

Source @}} >

® Our motivation: measure the quality of consensus from knowledge vote, Domains [ %
assign high weights to those domains which provide high-quality consensus i
and penalize those domains which provide bad consensus. [Aggregate Source Models with Domain Weight ]

1. Consensus quality: if one consensus class is supported by[more source domains|with |higher confidence,|then it will be more likely to
represent the true label, which leads to higher consensus quality. \ /

S = {D§}§=1,v5’ cS Q)= Z np,(S") - max p;(S’) Total consensus quality. Marginal contribution for ]D)‘Sf.
XT ey

2. Domain quality: describing the marginal contribution to the total consensus quality of each source domain as CF(D%) = Q(S) — Q(S \ {D%})

Nj - CF(DE) Does not need to access original data.

Re-weighting strategy from consensus focus: ay,; = s—X—, ot — (1 — R L HEE - i
g g gy o o = (e Sy Ny - CF(DE) Can identify malicious domain!

Tk=1 NictNg’

ol | Visual Analytics Group | State Key Lab of CAD&CG, Zhejiang University




Our Decentralized UMDA Paradigm: KD3A

BatchNorm MMD: Decentralized Optimization of H -divergence

Minimizing the #-divergence can optimize the UMDA upper bound. Theorem 1 Let H be the model space, {epy (h)}i_, and

_ o _ _ eny (h) be the task risks of source domains {]D) }E | and
® Previous methods: optimizing H -divergence with the kernel-based MMD. the target domain Dy, and o € R, K i = 1 be the

_ e ‘ % . domain weights. Then for all h € H we have:
min Y oudipp(D§, D7) Need to access original data. Task loss #-divergence

heH
N
€D (h) < Z Q. (eDg (h) + d'H(DS,]D)T)) +Xo (B
® Our motivation: utilizes the mean and variance parameters in each =
BatchNorm layer to optimize the H -divergence without accessing data. [The Generalization Bound of UMDA ]

2
1. Build Kernel-MMD with batch-normalized feature 7r; and quartic kernel (X5, XT) = ((nf i)+ %) ;

dvivin (D%, D7) = ||[E(7y)—E(w] ) |I3+E[w 1> —E[=] 2|3
2. Obtaining {E(mf), Var(m)}t_, from L BatchNorm layers of the K + 1 source domain models : E[r]? = Var(m) + [E(1r)]?

Tips: directly optimizing this loss requires to traverse all BatchNorm

3. Training target model hr: layers, which is time-consuming. Instead, we use a EM-liked method.

L K+1 . - o vy~ First, getting the global optimal solution as u,,(7]) = X211 ay E(wf),
Z > c(llutm (w15 + il |7 = Bl 75) top[mT]* = S22y E[rk]”. Then, directly substituting the solution
{:» =1 k=t into the target model. This heuristic method works well in practice.

Visual Analytics Group | State Key Lab of CAD&CG, Zhejiang University




Our Decentralized UMDA Paradigm: KD3A

Algorithm of KD3A

Algorithm 1 KD3A training process with epoch t.

Input:

Source domains & = {D% 1} . Target domain Dr;

Target model hgffl) with parameters @ —1);

Confidence gate ¢*);

Output:

N T T U

._
[=))

S A U~ > e

. aF « ConsensusFocus (D, {hEH_  {N ).
: // Moa’el Ag}gr@ganon

: Train h
17:

Target model hgf) with parameters @ ("),

/I Locally training on source domains:

for DY in S do
Model initialize: (h%, ©%) « (h(=1, @(=1),
Train h% with classification loss on D

end for

Upload {(h%, ©%)}_ | to the target domain.

!l Knowledge Vote:

D5 !« Knowledge Vote(Dr, g(t) {hs}

Tram hE 1 with LK loss (5) on DY

!l Consensus Focus:

Step 1

> Step 2

CF @L y

LOF) L
Ok } Step 3

<—ZL

: // BatchNorm MMD
: Obtain {E[7}]

=12} 5T from {(hk
%f) with BatchNorm MMD on Dr.
Return (h%f), o).

Visual Analytics Group | State Key Lab of CAD&CG, Zhejiang University

Generalization Bound for KD3A

Theorem 2 (The decentralized generalization bound for
KD3A). Let hr be the target model of KD3A, {DE} 1}

be the extended source domains through Knowledge Vote
and o¢f € Rf“q, f;ll ot =1 be the domain weights
through Consensus Focus. Then we have:

K+1

S ofF

k=1

1
€Dr (hT) < (E]D)E_ (hT) + §d'HAH(DI§, DT)) +Ag

(13)

The generalization performance of KD3A bound (13) de-
pends on the quality of the consensus knowledge, as the
following proposition shows (see Appendix C for proof):

Proposition 2 The KD3A bound (13) is a tighter bound
than the original bound (2), if the task risk gap between the
knowledge distillation domain I[Dé{ 1 and the target domain

Dt is smaller than the following upper-bound for all source
domain k € {1,--- , K}, that is, E]D§<+1(h) should satisfy:

sup |EDK+1 (h) — ep,(h)| < inf |E]DK+1 (h) — epr (h)]
heX heH 5

1
+§d7{AH(D§,DT> + )\g

For good domains:

KD3A provides better consensus
knowledge with Knowledge Vote,
making Epk+1 closer to eyt

For bad domains:

KD3A filters out their knowledge
with Consensus Focus, making
Epk+1 stay away from bad domains.




Experiments

Domain Adaptation Performance on DomainNet

Standards Methods Clipart Infograph Painting  Quickdraw Real Sketch Avg

W/o DA Oracle 6931047 3451040  66.31067  66.82051  80.1i0s0  60.Twous | 63.0

Source-only | 5214051  23.1i00s 4773006 1334070  60.70030 4652056 | 40.6

Y —div. MDAN 60.310.141 25.010.43 50.310.36 8.211.02 61.540.46 5131058 | 42.8

M3SDA | 5864053 2601080 5231055 634055 627105 49.5.07 | 426

%‘;‘:{f&gj DAEL 7084014 2652013 HTdwoss 122407  65.04003  60.62005 | 48.7

source CMSS 6424015 28002  53.61030 16.00012 6344001 5384035 | 46.5
Selection

Others DSBN* 60.3 99.6 52.3 9.1 62.7 A7.6 42.4

SHOT* 61.7 99.9 52.6 12.2 67.7 48.6 44.2

Decentralized | FADA* 59.1 91.7 47.9 8.8 60.8 50.4 41.5

UMDA FADA 453107 163108 389407  T9:04 467104  268i04 | 30.3

KD3A | 7252062 2344043 609:071 1641028 72.7r055 60.641032 | 51.1

Table 1. UMDA accuracy (%) on the DomainNet dataset. Our model KD3A achieves 51.1% accuracy, significantly outperforming all
other baselines. Moreover, KD3A achieves the oracle performance on two domains: clipart and sketch. *: The best results recorded in our

re-implementation.
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Experiments

Domain Adaptation Performance on DigitFive

Methods mt mm Y syn usps Avg
Oracle 9951008 9544015 9231014 98.7+0.04 99.210.00 97.0
Source-only | 92341091 063.T40s3 71.54075 8344079 90.7141954 | 80.3
MDAN 9724008 7571083 8221082 8524058 93.3104s | 86.7
M?SDA 9844068  72.841.13 81.310s86 89.64056 96.240s1 | 87.7
CMSS 99.04008 7534057 8841054  93.Tiro21 9771013 | 90.8
DSBN* 97.2 71.6 77.9 88.7 96.1 86.3
FADA 91.440.7 62.510.7 50.540.3 71.8405 91.744 73.6
FADA* 92.5 64.5 72.1 82.8 91.7 80.8
SHOT 98.24037 80.24041 8451032 91.1i023 97.11p2s8 | 90.2
KD3A" 9914015 8694011 82210926 89.24019 9844011 | 91.2
KD3A 992,012 8731023 8561017 8941028 9851025 | 92.0

Table 6. UMDA accuracy (%) on the Digit-5.

*: The best results recorded in our re-implementation. 7: Methods trained without

data-augmentation. Our model KD3A achieves 92.0% accuracy and outperforms all other baselines.

Visual Analytics Group | State Key Lab of CAD&CG, Zhejiang University
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Experiments

Domain Adaptation Performance on Office-Caltech10

Methods A C D W Avg .

Oracle 99.7 98.4 99.8 99.7 99.4 = U! g @0 @
Source-only 86.1 87.8 98.3 99.0 92.8 : - =

MDAN 98.9 98.6 91.8 95.4 96.1 © @ @

M?SDA 94.5 92.2 99.2 995 | 96.4 - ‘,.!. H

CMSS 96.0 93.7 99.3 99.6 97.2

DSBN* 93.2 91.6 98.9 99.3 95.8 = . i-~'- O k?_}‘

FADA 842105 88.74+0.5 871106 88.140.4 87.1 backpack monitor headphone bike mouse
SHOT 96.4 96.2 98.5 99.7 97.7 [Office-Caltech10 Dataset ]
KD3AT 96.040.07  95.24008 9794011 99.64003 | 97.2

KD3A 9741008 96.45011 9841008 99.741002 | 97.9

Table 9. UMDA accuracy (%) on the Office-Caltech10. *: The best results recorded in our re-implementation. ¥: Methods trained without
data-augmentation.

Visual Analytics Group | State Key Lab of CAD&CG, Zhejiang University




Experiments

Domain Adaptation Performance on AmazonReview

The most gorgeous artwork in comic books. It
@A contains the most extraordinary and finest

Methods Books DVDs Elec. Kitchen | Avg. Ao
Source—only 74.4 79.2 73.5 71.4 74.6 In my opinion it is the best American animated
MDAN 78.6 80.7 854 86.3 82.8 (N film ever released. It has a beautiful story with
FADA 781 827 77.4 77.5 78.9 a ton of laughs, a lot of teachable moments.
KD3A 79.0 30.6 85.6 86.9 83.1

My advice is if you need a CD rack that holds a

Table 8. The UMDA performance on Amazon Review dataset. | lokat CD's? Save your money and invest in
something nicer and more sturdy.
Data Au g me ntatl on | N DO m al N Ad aptatl on I absolutely love this product. my neighbor has

M four little yippers and my hepard/chow mix
was antogonized on our side of the fence.

Clipart Infograph Painting Avg
KD3A" | 69.74067 21.24035 58.8+0.66 | 48.8 _ _ A Review D
KD3A | 7255062 2341043 609:071 | 511 Augmentation Strategy: [AmazonReview Dataset.]

Quickdraw Real Sketch To reduce hyper-parameters, we use mixup as a
KD3A™ | 151200 7041051 579200 | 488 yper-p ! P

KD3A | 1641028 7271055 6064099 | 5L1 un_lfled augmentation strgtegy and S|_mply set the
mix-parameter a = 0.2 in all experiments.

Table 7. The ablation study for data-augmentation strategies on
DomainNet.7: Methods trained without data-augmentation.

Visual Analytics Group | State Key Lab of CAD&CG, Zhejiang University




Experiments

Robustness To Negative Transfer

We construct irrelevant and malicious source domains on DomainNet and conduct synthesized experiments
to show the robustness of KD3A to negative transfer.

Since Quickdraw is very different from others, and all models perform bad on it, we take Quickdraw as the
irrelevant domain, denoted by IR-qdr. Moreover, we perform poisoning attack on the high-quality domain

: - ) ickd
Real with m% wrong labels to construct malicious domain, denoted by MA-m. quickdraw

: Info Consensus | Domain
H-divergence : A~
gain focus drop e
IR-qdr 57.9 ST.T 58.1 8.3 — Conss e LV 1
MA-15 90.5 50.5 52.1 — e
MA-30 49.8 48.9 51.1 50.7 T
MA_SO 476 463 50'6 o ”Izlruinilll:[’rnucit// > )"“ | 6 OT7Irziinin(:I:Pruux‘i}()[ 1. )OTB | @
Table 2. Average UMDA accuracy (%) with irrelevant and mali- (a) IR-qdr. (b) MA-30.
cious domains. IR-qdr means to use the Quickdraw as the irrele-
vant source domain, while MA-m means to construct a malicious Figure 4. Weights assigned to the irrelevant and malicious domains
source domain with m% mislabeled data. With consensus focus, in the training process. Our consensus focus can identify these bad

our KD3A is robust to negative transfer. domains with the low weights.

Visual Analytics Group | State Key Lab of CAD&CG, Zhejiang University




Experiments

Communication Efficiency And Privacy Security

r 0.2 0.5 1 2 10 100
FADA | 39.2 40.3 40.5 40.5 408 41.5
KD3A | 50.5 509 51.1 51.3 513 520

Table 3. Average UMDA accuracy (%) with different communi-
cation rounds 7 for our KD3A and FADA. KD3A achieves good
performance with low communication cost (e.g., 7 < 1).

Epoch:10 Epoch:20 Epoch:30 Epoch:40

Figure 5. The gradient leakage attack (Zhu et al., 2019) on decen-
tralized training strategy. KD3A is robust to this attack while
FADA causes the privacy leakage.
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Conclusions:

1.

Due to the adversarial training strategy, FADA works under
large communication rounds (i.e. r = 100).

KD3A works under the low communication cost withr =1,
leading to a 100 x communication reduction.

KD3A is robust to communication rounds. For example, the
accuracy only drops 0.9% when r decreases from 100 to 1.

KD3A works under extremely low communication cost (e.g.,
r=0.2&0.5).

Due to the low communication cost, our KD3A is robust to
the advanced gradient leakage attack, which demonstrates
high privacy security.
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