Guarantees for Tuning the Step Size
using a Learning-to-Learn Approach

Xiang Wang, Shuai Yuan, Chenwei Wu, Rong Ge

Duke University

Optimization for neural networks

Step size, momentum,
weight decay,

€r prograr

put
ion Go pl

At last — a comf gram that
can beat achamp ayer PAGE484

Learning to Learn Learning to learn by gradient descent

by gradient descent

* |dea: use a meta-learning approach to tune hyper-parameters or

earn a new optimizer!
/Andrychowicz et al. 2016, Wichrowska et al. 2017, Metz et al. 2019]

* Goal: optimize objective function f(w) for a distribution of tasks.

* |dea: Abstract the optimization algorithm as an optimizer with
parameter O. Optimize the parameter © for the distrib%ion of task.

W
f(w)
V(w)

Aw
Optimizer W =W+ Aw

e Optimizer can be simple but can even be a neural network.

How to train an optimizer?

Wy W, Wi
f(wp) Optimizer » f(wq) Optimizer » f(wz) » » Optimizer » f(wy)
Vf(wo) (C)) Vf(w,) (C)] Vi(w,) =y 77 (C)] Vf(wy)

e Unroll the optimizer for t steps.
* Define a meta-objective over the trajectory.
* Do (meta-)gradient descent on optimizer parameter O.

* No theoretical guarantees on training process or the learned optimizer

[This work: Analyze step size tuning in GD/SGD for simple quadratic objectives. }

Optimizing the step size for a simple quadratic objective

e Naive meta-o bjective: loss at last step Point w at T-th iteration with step size i

F(n) = f(wyr)
[- Theorem: For almost all values of 1, the meta-gradient F'(n) is either}

exponentially large or exponentially small in T.

* |[dea: meta-gradient is exponentially large (small) because the meta-
objective is exponentially large (small) in T.

* New objective: G(1) = %log f(Wn,T) = %108 F(n)

* Theorem: For the new objective, the meta-gradient G'(n) is always
polynomial in all relevant parameters.

Numerical Issues in Computing Meta-gradient

* G'(n) =—"-F'(n), both terms are exponentially large or small,
but they cancel each other.

* This is exactly how one would compute G'(7) using
backpropagation = numerical issues!

0.4
Ours
— — Tensorflow Training trajectory for the actual meta-
= 0.2 gradient vs. meta-gradient computed by
___________ TensorFlow
0 I I
0 100 200 300

Meta steps

Generalization of trained optimizer

* Recall that w,, ;- is the weight w at the T-th iteration with step size 7

* Two ways to define the meta-objective:

1. Train-by-train (original approach used in
* Define meta-objective on training set

* e.g., simply choose F (1) = f(w), 1)
2. Train-by-validation

* Define meta-objective on a validation set (evaluate w,, - on a
validation set)

When do we need train-by-validation?
Kl'heorem: \

e 1. when noise o is large, and n (#samples) is a constant fraction of d
(#dimension), then train-by-validation is better.

* 2. When n (#samples) is much larger than d (#dimension), then train-
\ by-train is close to optimal. j

Empirical observation on neural net optimizers

Accuracy (test)

1.02
T e SGD .
— — TbT1000 1F
TbV1000+1000 _
0.95 — === TbT2000 - § 0.98 f e G T e ~;: S
N— :(’.“-"::_‘_. “
8096 £°
0.9 © ¢
T T PP VTP TR PR PR T PTTPOT IETPOTOVR SR TTw = ;
. 8ooark
085/ T — =TI o e SGD
{i | | |] T T 0.92 1 — — TbT60000
. F TbV50000+10000
0.8 ' ! ! ! ' L ! L 0.9 L . . .
0 500 1000 1500 2000 2500 3000 3500 4000 0 0.5 1 1.5 2 2.5 3 3.5 4
Steps Steps 104

1000 samples (MNIST) All samples (MNIST)

Conclusion

* Choosing meta-objective carefully may alleviate gradient
explosion/vanishing problem; needs to be careful with backprop.

* When there are fewer samples/more noise, need to define meta-
objective on a separate validation set.

Paper link:

