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Optimization for neural networks

How to train the nets?

Just use SGD/Adam!

Step size, momentum, 
weight decay, 

……



Learning to Learn

• Idea: use a meta-learning approach to tune hyper-parameters or
learn a new optimizer!
[Andrychowicz et al. 2016, Wichrowska et al. 2017, Metz et al. 2019]
• Goal: optimize objective function f(w) for a distribution of tasks.
• Idea: Abstract the optimization algorithm as an optimizer with 

parameter Θ. Optimize the parameter Θ for the distribution of task.

• Optimizer can be simple but can even be a neural network.
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How to train an optimizer?

• Unroll the optimizer for t steps.
• Define a meta-objective over the trajectory.
• Do (meta-)gradient descent on optimizer parameter Θ.
• No theoretical guarantees on training process or the learned optimizer

Optimizer 
(Θ)

w0
f(w0)
∇f(w0)

……

w1
f(w1)
∇f(w1)

……

Optimizer
(Θ)

w2
f(w2)
∇f(w2)

……

Optimizer
(Θ)

wt
f(wt)
∇f(wt)

……

…….

This work: Analyze step size tuning in GD/SGD for simple quadratic objectives. 



Optimizing the step size for a simple quadratic objective

• Naïve meta-objective: loss at last step 
F 𝜂 = 𝑓(𝑤!,#)

• Theorem: For almost all values of 𝜂, the meta-gradient F′ 𝜂 is either 
exponentially large or exponentially small in T.

• Idea: meta-gradient is exponentially large (small) because the meta-
objective is exponentially large (small) in T.

• New objective: G 𝜂 = $
#
log 𝑓 𝑤!,# = $

#
log F(𝜂)

• Theorem: For the new objective, the meta-gradient G′ 𝜂 is always 
polynomial in all relevant parameters. 

Point w at T-th iteration with step size 𝜂



Numerical Issues in Computing Meta-gradient

• G% 𝜂 = &'
&(
⋅ F% 𝜂 , both terms are exponentially large or small,

but they cancel each other.
• This is exactly how one would compute G% 𝜂 using 

backpropagation è numerical issues!
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Generalization of trained optimizer

• Recall that 𝑤!,# is the weight 𝑤 at the T-th iteration with step size 𝜂
• Two ways to define the meta-objective:
1. Train-by-train (original approach used in [Andrychowicz et al. 2016])
• Define meta-objective on training set
• e.g., simply choose 𝐹 𝜂 = 𝑓(𝑤!,#)

2. Train-by-validation [Metz et al. 2019]
• Define meta-objective on a validation set (evaluate 𝑤!,# on a 

validation set)



When do we need train-by-validation? 

Theorem: 
• 1. when noise 𝜎 is large, and n (#samples) is a constant fraction of d 

(#dimension), then train-by-validation is better.
• 2. When n (#samples) is much larger than d (#dimension), then train-

by-train is close to optimal.



Empirical observation on neural net optimizers
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Conclusion

Paper link: 

• Choosing meta-objective carefully may alleviate gradient 
explosion/vanishing problem; needs to be careful with backprop.
• When there are fewer samples/more noise, need to define meta-

objective on a separate validation set.


