Guarantees for Tuning the Step Size using a Learning-to-Learn Approach

Xiang Wang, Shuai Yuan, Chenwei Wu, Rong Ge Duke University

Optimization for neural networks

How to train the nets?

Just use SGD/Adam!

Step size, momentum, weight decay,

.....

Learning to Learn

Learning to learn by gradient descent by gradient descent

Neural Network

Optimizer>

• Idea: use a meta-learning approach to tune hyper-parameters or learn a new optimizer!

[Andrychowicz et al. 2016, Wichrowska et al. 2017, Metz et al. 2019]

Goal: optimize objective function f(w) for a distribution of tasks.

• Idea: Abstract the optimization algorithm as an optimizer with parameter Θ. Optimize the parameter Θ for the distribution of task.

• Optimizer can be simple but can even be a neural network.

How to train an optimizer?

- Unroll the optimizer for t steps.
- Define a meta-objective over the trajectory.
- Do (meta-)gradient descent on optimizer parameter ⊙.
- No theoretical guarantees on training process or the learned optimizer

This work: Analyze step size tuning in GD/SGD for simple quadratic objectives.

Optimizing the step size for a simple quadratic objective

- Naïve meta-objective: loss at last step $F(\eta) = f(w_{\eta,T})$
- **Theorem**: For almost all values of η , the meta-gradient $F'(\eta)$ is either exponentially large or exponentially small in T.
- Idea: meta-gradient is exponentially large (small) because the metaobjective is exponentially large (small) in T.
- New objective: $G(\eta) = \frac{1}{T} \log f(w_{\eta,T}) = \frac{1}{T} \log F(\eta)$
- **Theorem**: For the new objective, the meta-gradient $G'(\eta)$ is always polynomial in all relevant parameters.

Numerical Issues in Computing Meta-gradient

- $G'(\eta) = \frac{dG}{dF} \cdot F'(\eta)$, both terms are exponentially large or small, but they cancel each other.
- This is exactly how one would compute $G'(\eta)$ using backpropagation \rightarrow numerical issues!

Training trajectory for the actual metagradient vs. meta-gradient computed by TensorFlow

Generalization of trained optimizer

- Recall that $w_{\eta,T}$ is the weight w at the T-th iteration with step size η
- Two ways to define the meta-objective:
- 1. Train-by-train (original approach used in [Andrychowicz et al. 2016])
 - Define meta-objective on training set
 - e.g., simply choose $F(\eta) = f(w_{\eta,T})$
- 2. Train-by-validation [Metz et al. 2019]
 - Define meta-objective on a validation set (evaluate $w_{\eta,T}$ on a validation set)

When do we need train-by-validation?

Theorem:

- 1. when noise σ is large, and n (#samples) is a constant fraction of d (#dimension), then train-by-validation is better.
- 2. When n (#samples) is much larger than d (#dimension), then trainby-train is close to optimal.

Empirical observation on neural net optimizers

All samples (MNIST)

1000 samples (MNIST)

Conclusion

- Choosing meta-objective carefully may alleviate gradient explosion/vanishing problem; needs to be careful with backprop.
- When there are fewer samples/more noise, need to define metaobjective on a separate validation set.

Thank You!