
Guarantees for Tuning the Step Size
using a Learning-to-Learn Approach

Xiang Wang, Shuai Yuan, Chenwei Wu, Rong Ge
Duke University

Optimization for neural networks

How to train the nets?

Just use SGD/Adam!

Step size, momentum,
weight decay,

……

Learning to Learn

• Idea: use a meta-learning approach to tune hyper-parameters or
learn a new optimizer!
[Andrychowicz et al. 2016, Wichrowska et al. 2017, Metz et al. 2019]
• Goal: optimize objective function f(w) for a distribution of tasks.
• Idea: Abstract the optimization algorithm as an optimizer with

parameter Θ. Optimize the parameter Θ for the distribution of task.

• Optimizer can be simple but can even be a neural network.

Optimizer

w
f(w)
∇f(w)
……

∆w
w’ = w + ∆w SGD(Θ) Neural Network

Optimizer

How to train an optimizer?

• Unroll the optimizer for t steps.
• Define a meta-objective over the trajectory.
• Do (meta-)gradient descent on optimizer parameter Θ.
• No theoretical guarantees on training process or the learned optimizer

Optimizer
(Θ)

w0
f(w0)
∇f(w0)

……

w1
f(w1)
∇f(w1)

……

Optimizer
(Θ)

w2
f(w2)
∇f(w2)

……

Optimizer
(Θ)

wt
f(wt)
∇f(wt)

……

…….

This work: Analyze step size tuning in GD/SGD for simple quadratic objectives.

Optimizing the step size for a simple quadratic objective

• Naïve meta-objective: loss at last step
F 𝜂 = 𝑓(𝑤!,#)

• Theorem: For almost all values of 𝜂, the meta-gradient F′ 𝜂 is either
exponentially large or exponentially small in T.

• Idea: meta-gradient is exponentially large (small) because the meta-
objective is exponentially large (small) in T.

• New objective: G 𝜂 = $
#
log 𝑓 𝑤!,# = $

#
log F(𝜂)

• Theorem: For the new objective, the meta-gradient G′ 𝜂 is always
polynomial in all relevant parameters.

Point w at T-th iteration with step size 𝜂

Numerical Issues in Computing Meta-gradient

• G% 𝜂 = &'
&(
⋅ F% 𝜂 , both terms are exponentially large or small,

but they cancel each other.
• This is exactly how one would compute G% 𝜂 using

backpropagation è numerical issues!

0 100 200 300
Meta steps

0

0.2

0.4
Ours
Tensorflow Training trajectory for the actual meta-

gradient vs. meta-gradient computed by
TensorFlow

Generalization of trained optimizer

• Recall that 𝑤!,# is the weight 𝑤 at the T-th iteration with step size 𝜂
• Two ways to define the meta-objective:
1. Train-by-train (original approach used in [Andrychowicz et al. 2016])
• Define meta-objective on training set
• e.g., simply choose 𝐹 𝜂 = 𝑓(𝑤!,#)

2. Train-by-validation [Metz et al. 2019]
• Define meta-objective on a validation set (evaluate 𝑤!,# on a

validation set)

When do we need train-by-validation?

Theorem:
• 1. when noise 𝜎 is large, and n (#samples) is a constant fraction of d

(#dimension), then train-by-validation is better.
• 2. When n (#samples) is much larger than d (#dimension), then train-

by-train is close to optimal.

Empirical observation on neural net optimizers

0 500 1000 1500 2000 2500 3000 3500 4000
Steps

0.8

0.85

0.9

0.95

1

Ac
cu

ra
cy

 (t
es

t)

SGD
TbT1000
TbV1000+1000
TbT2000

0 0.5 1 1.5 2 2.5 3 3.5 4
Steps 104

0.9

0.92

0.94

0.96

0.98

1

1.02

Ac
cu

ra
cy

 (t
es

t)

SGD
TbT60000
TbV50000+10000

1000 samples (MNIST) All samples (MNIST)

Conclusion

Paper link:

• Choosing meta-objective carefully may alleviate gradient
explosion/vanishing problem; needs to be careful with backprop.
• When there are fewer samples/more noise, need to define meta-

objective on a separate validation set.

