CRPO: A New Approach for Safe Reinforcement Learning with Convergence Guarantee

Tengyu Xu¹, Yingbin Liang¹, Guanghui Lang²

The Ohio State University¹ Georgia Institute of Technology²

International Conference on Machine Learning (ICML) 2021

Safe Reinforcement Learning

- Agent receives both reward r(s, a) and costs $c_i(s, a)$ $(i = 1, \dots, m)$
- Goal of SRL:

$$\max_{w} J_0(w)$$
 s.t. $J_i(w) \leq D_i$ $(i = 1, \dots, m)$

- ▶ Objective function: $J_0(w) = \mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, s_{t+1}) \big| s_0 \sim \mu_0, \pi_w\Big]$
- ► Cost function: $J_i(w) = \mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^t c_i(s_t, a_t, s_{t+1}) \big| s_0 \sim \mu_0, \pi_w\Big]$
- Constraints threshold: $D_i > 0$

Primal-Dual Approach

Construct a Lagrangian function

$$\mathcal{L}(w,\lambda) := -J_0(w) + \sum_{i=1}^m \lambda_i (J_i(w) - D_i)$$

- $\lambda = [\lambda_1, ..., \lambda_m]^{\top}$ is dual variable vector.
- Solve a minimax problem over Lagrangian function

$$\max_{\lambda \in \mathbb{R}^m_+} \min_{w} \mathcal{L}(w, \lambda)$$

- Pro: guarantee converges to global optimal policy π^*
- ▶ Con: Slow convergence rate, sensitive to hyper-parameter
- Motivation: propose an easy-to-implement SRL algorithm that has global optimality guarantee

Constraint-Rectified Policy Optimization (CRPO)

- CRPO update:
 - ► **Step 1** Constraint Estimation:
 - Estimate constraint function $\hat{J}_{i,t} \approx J_i(w_t)$ via policy evaluation
 - Step 2 Policy Optimization:
 - If there exists $1 \le i_t \le m$ s.t. $\hat{J}_{i_t} \ge d_i + \eta \to \text{minimize } J_{i_t}(\pi_{w_t})$
 - If exist multiple i_t , randomly choose one to minimize
 - lacksquare If $\hat{J}_i \leq d_i + \eta$ for all $1 \leq i \leq m o \max$ maximize $J_0(\pi_{w_t})$
- Key features:
 - Immediate response to constraint satisfaction/violation
 - ▶ No dual variable, easy to implement

Global Convergence of CRPO

Theorem (Tabular Setting)

With probability at least $1 - \delta$, CRPO output satisfies

$$J_0(\pi^*) - \mathbb{E}[J_0(w_T)] \leq \Theta\left(rac{\sqrt{|\mathcal{S}||\mathcal{A}|}}{(1-\gamma)^{1.5}\sqrt{T}}
ight),$$

and for all $i = 1, \dots, m$,

$$\mathbb{E}[J_i(w_T)] - D_i \leq \Theta\left(\frac{\sqrt{|\mathcal{S}||\mathcal{A}|}}{(1-\gamma)^{1.5}\sqrt{T}}\right).$$

- Both objective and cost converge at rate $\mathcal{O}(1/\sqrt{T})$
- This rate matches primal-dual approach (Ding et al. 2020)

Global Convergence of CRPO

Theorem (Function Approximation Setting)

With probability at least $1 - \delta$, CRPO output satisfies

$$J_0(\pi^*) - \mathbb{E}[J_0(w_T)] \leq \Theta\left(\frac{1}{\sqrt{T}}\right) + \Theta\left(arepsilon_{approx}
ight),$$

and for all $i = 1, \dots, m$,

$$\mathbb{E}[J_i(w_T)] - D_i \leq \Theta\left(\frac{1}{\sqrt{T}}\right) + \Theta\left(\varepsilon_{approx}\right).$$

- ε_{approx} is introduced by function approximation
- This rate matches primal-dual approach (Ding et al. 2020)

T. Xu, Y. Liang, G. Lan CRPO June 20th, 2021

Empirical Results

7 / 8

- Convergence
 - CRPO achieves much higher reward
- Constraint violation
 - CRPO drop below thresholds (and thus satisfy the constraints) much faster than that of PDO
 - CRPO tracks constraint thresholds almost exactly, which sufficiently explores boundary of feasible set to optimize reward

Primal-Dudal under-enforce constraints, and yields lower reward

- For more details about this work, please refere to CRPO: A New Approach for Safe Reinforcement Learning with Convergence Guarantee, T. Xu, Y. Liang, G. Lan, ICML 2021, https://https://arxiv.org/abs/2011.05869
- Feel free to contact me (xu.3260@osu.edu) for questions.

Thank You!