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Safe Reinforcement Learning

• Agent receives both reward r(s, a) and costs ci (s, a) (i = 1, · · · ,m)

• Goal of SRL:

max
w

J0(w)

s.t. Ji (w) ≤ Di (i = 1, · · · ,m)

I Objective function: J0(w) = E
[∑∞

t=0 γ
tr(st , at , st+1)

∣∣s0 ∼ µ0, πw

]
I Cost function: Ji (w) = E

[∑∞
t=0 γ

tci (st , at , st+1)
∣∣s0 ∼ µ0, πw

]
I Constraints threshold: Di > 0
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Primal-Dual Approach

• Construct a Lagrangian function

L(w , λ) := −J0(w) +
∑m

i=1 λi (Ji (w)− Di )

I λ = [λ1, ..., λm]> is dual variable vector.

• Solve a minimax problem over Lagrangian function

max
λ∈Rm

+

min
w
L(w , λ)

I Pro: guarantee converges to global optimal policy π∗

I Con: Slow convergence rate, sensitive to hyper-parameter

• Motivation: propose an easy-to-implement SRL algorithm that has
global optimality guarantee
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Constraint-Rectified Policy Optimization (CRPO)

• CRPO update:
I Step 1 – Constraint Estimation:

Estimate constraint function Ĵi,t ≈ Ji (wt) via policy evaluation

I Step 2 – Policy Optimization:

If there exists 1 ≤ it ≤ m s.t. Ĵit ≥ di + η → minimize Jit (πwt )
If exist multiple it , randomly choose one to minimize
If Ĵi ≤ di + η for all 1 ≤ i ≤ m → maximize J0(πwt )

• Key features:
I Immediate response to constraint satisfaction/violation
I No dual variable, easy to implement
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Global Convergence of CRPO

Theorem (Tabular Setting)

With probability at least 1− δ, CRPO output satisfies

J0(π∗)−E[J0(wT )] ≤ Θ

( √
|S||A|

(1− γ)1.5
√
T

)
,

and for all i = 1, · · · ,m,

E[Ji (wT )]− Di ≤ Θ

( √
|S||A|

(1− γ)1.5
√
T

)
.

• Both objective and cost converge at rate O(1/
√
T )

• This rate matches primal-dual approach (Ding et al. 2020)
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Global Convergence of CRPO

Theorem (Function Approximation Setting)

With probability at least 1− δ, CRPO output satisfies

J0(π∗)−E[J0(wT )] ≤ Θ

(
1√
T

)
+ Θ (εapprox) ,

and for all i = 1, · · · ,m,

E[Ji (wT )]− Di ≤ Θ

(
1√
T

)
+ Θ (εapprox) .

• εapprox is introduced by function approximation

• This rate matches primal-dual approach (Ding et al. 2020)
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Empirical Results
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• Convergence
I CRPO achieves much higher reward

• Constraint violation
I CRPO drop below thresholds (and thus satisfy the constraints) much

faster than that of PDO
I CRPO tracks constraint thresholds almost exactly, which sufficiently

explores boundary of feasible set to optimize reward
I Primal-Dudal under-enforce constraints, and yields lower reward
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• For more details about this work, please refere to
CRPO: A New Approach for Safe Reinforcement Learning with
Convergence Guarantee, T. Xu, Y. Liang, G. Lan, ICML 2021,
https://https://arxiv.org/abs/2011.05869

• Feel free to contact me (xu.3260@osu.edu) for questions.

Thank You!
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