
Modeling Hierarchical Structures with

Continuous Recursive Neural Networks

Jishnu Ray Chowdhury and Cornelia Caragea

Computer Science

University of Illinois at Chicago

Sentence Encoding

Sentence Encoding Model

John saw a man with binoculars

 [0,1,2] [3,4,5] [6,7,8] [9,0,0] [1,3,5] [7,4,5]

[6,8,4]

● Many natural language processing tasks
require the composition of a sequence of
word vectors into a single sentence vector
representing the “meaning of the whole”.

● Examples of such tasks:
○ Sentence Similarity,
○ Paraphrase mining,
○ Natural Language Inference,
○ Classification.

Hierarchies within Text

● Intuitively, understanding and modeling the
hierarchical constituency structures in text
should be useful for sentence composition.

Figure from: WooJin Chung and Samuel R Bowman. (2018). The lifted matrix-space model for semantic composition.
In Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018),

Modeling Hierarchical Structures

One way: Recursive Neural Networks (RvNNs)

(())))((

f(a,man)
f(with,binoculars)f(saw, f(a,man))

f(f(saw, f(a,man)), f(with,binoculars))

f(John, f(f(saw, f(a,man)), f(with,binoculars)))

● f() is a recursive composition function.

Modeling Hierarchical Structures

Limitation: Cannot learn the structure itself (structure needs to be provided as an input).

One way: Recursive Neural Networks (RvNNs)

(())))((

f(a,man)
f(with,binoculars)f(saw, f(a,man))

f(f(saw, f(a,man)), f(with,binoculars))

f(John, f(f(saw, f(a,man)), f(with,binoculars)))

● f() is a recursive composition function.

Latent Structure Learning Models

Reinforcement Learning or Biased Gradients

Chart Parsers

Stack Augmented Recurrent Neural Networks

Latent Structure Learning Models

Reinforcement Learning or Biased Gradients [1,2,3]

● Can increase variance or bias unless care is taken.
● Some of the models fail in simple synthetic tasks.[4]

● Sometimes use a single discrete structural merging decision per iteration.[2]

[1] “Learning to Compose Words into Sentences with Reinforcement Learning” Yogatama et al. ICLR 2017
[2] “Learning to Compose Task-Specific Tree Structures” Choi et al. AAAI 2018
[3] “Cooperative Learning of Disjoint Syntax and Semantics” Havrylov et al. NAACL 2019
[4] “ListOps: A Diagnostic Dataset for Latent Tree Learning” Nangia et al. NAACL 2018

Chart Parsers

Stack Augmented Recurrent Neural Networks

Latent Structure Learning Models

Reinforcement Learning or Biased Gradients

Chart Parsers [1,2]

● Can be comparatively expensive to run with longer sequences in practical situations.
● Have to recurse over the full sequence length keeping track of multiple paths of composition.

[1] “The Forest Convolutional Network: Compositional Distributional Semantics with a Neural Chart and without Binarization” Le at al.
EMNLP 2015
[2] “Jointly learning sentence embeddings and syntax with unsupervised Tree-LSTMs” Maillard et al. Natural Language Engineering 2019

Stack Augmented Recurrent Neural Networks

Latent Structure Learning Models

Reinforcement Learning or Biased Gradients

Chart Parsers

Stack Augmented Recurrent Neural Networks [1,2,3]

● Have to recurse over the full sequence left to right.
● One of the most successful models (Ordered Memory[3]) uses a nested loop with an

inner loop over its memory slots - adds overhead.

[1] “A fast unified model for parsing and sentence understanding.” Bowman et al. ACL 2016
[2] “Learning to Compose Words into Sentences with Reinforcement Learning” Yogatama et al. ICLR 2017
[3] “Ordered Memory” Shen et al. NeurIPS 2019

Latent Structure Learning Models

Reinforcement Learning or Biased Gradients

Chart Parsers

Stack Augmented Recurrent Neural Networks

Proposed Approach:

Continuous Recursive Neural Network (CRvNN)
● Backpropagation-friendly approximation of structure-inducing RvNN.
● Can learn to recurse over only the induced binary tree-depth by halting early.
● Can parallely compose or merge multiple child nodes (which makes it faster than

Ordered Memory)

Continuous Recursive Neural Network (CRvNN)

● We introduce a continuous relaxation to the structure of a Recursive Neural
Network to allow it to learn both the structure and the composition function
through backpropagation.

(())))((

f(a,man)
f(with,binoculars)f(saw, f(a,man))

f(f(saw, f(a,man)), f(with,binoculars))

f(John, f(f(saw, f(a,man)), f(with,binoculars)))

f() is a recursive composition function.

A New Look at RvNNs

● To make the shift from RvNNs to CRvNNs, we first re-formulate the original RvNNs in
terms of two rules based of two sequences of binary values:

○ Composition probabilities

○ Existential probabilities.

A New Look at RvNNs

Given a sequence x1:n (x1, x2, x3,…,xn), we also maintain two sequences of binary probabilities -
composition probabilities c1:n (c1,c2,c3,...,cn) and existential probabilities e1:n (e1,e2,e3….,en)

A New Look at RvNNs

Given a sequence x1:n (x1, x2, x3,…,xn), we also maintain two sequences of binary probabilities -
composition probabilities c1:n (c1,c2,c3,...,cn) and existential probabilities e1:n (e1,e2,e3….,en)

x1:n x1 x2 x3 x4

e1:n 1 1 1 1

Existential probabilities ei = 1 means xi is still “existing”. ei = 0 means xi is treated as “non-existent”

Iteration 1

A New Look at RvNNs

x1:n x1 x2 x3 x4

e1:n 1 1 1 1

Iteration 1
x1:n x1 x2 x3 x4

e1:n 1 1 1 1

c1:n 0 1 0 0

Generate composition probabilities

A New Look at RvNNs

x1:n x1 x2 x3 x4

e1:n 1 1 1 1

Iteration 1
x1:n x1 x2 x3 x4

e1:n 1 1 1 1

c1:n 0 1 0 0

Generate composition probabilities

A New Look at RvNNs

x1:n x1 x2 x3 x4

e1:n 1 1 1 1

Iteration 1
x1:n x1 x2 x3 x4

e1:n 1 1 1 1

c1:n 0 1 0 0

Generate composition probabilities

x1:n x1 --- f(x2,x3) x4

e1:n 1 0 1 1

Update

A New Look at RvNNs

x1:n x1 --- f(x2,x3) x4

e1:n 1 0 1 1

Iteration 2

A New Look at RvNNs

x1:n x1 --- f(x2,x3) x4

e1:n 1 0 1 1

Iteration 2

x1:n x1 --- f(x2,x3) x4

e1:n 1 0 1 1

c1:n 1 0 0 0

Generate composition probabilities

A New Look at RvNNs

x1:n x1 --- f(x2,x3) x4

e1:n 1 0 1 1

Iteration 2

x1:n x1 --- f(x2,x3) x4

e1:n 1 0 1 1

c1:n 1 0 0 0

Generate composition probabilities

A New Look at RvNNs

x1:n x1 --- f(x2,x3) x4

e1:n 1 0 1 1

Iteration 2

x1:n x1 --- f(x2,x3) x4

e1:n 1 0 1 1

c1:n 1 0 0 0

Generate composition probabilities

x1:n --- --- f(x1,f(x2,x3)) x4

e1:n 0 0 1 1

Update

A New Look at RvNNs

x1:n --- --- f(x1,f(x2,x3)) x4

e1:n 0 0 1 1

Iteration 3

x1:n --- --- f(x1,f(x2,x3)) x4

e1:n 0 0 1 1

c1:n 0 0 1 0

Generate composition probabilities

x1:n --- --- --- f(f(x1,f(x2,x3)),x4)

e1:n 0 0 0 1

Update

Mathematical Formalism

Update rules for iteration k:

left(xi
k) returns the immediately left item xj

k
 after skipping over any value xl

k with el
k as 0.

Towards Continuous Recursive Neural Networks

Update rules for iteration k:

● Use a model to predict ck
i:n to be in [0,1]; ek

1:n is also allowed to be in [0,1]

● Use a soft attention-like neighbor retriever function left() based on existential
probabilities ek

1:n

Dynamic Halt

x1:n --- --- f(x1,f(x2,x3)) x4

e1:n 0 0 1 1

Iteration 3

x1:n --- --- f(x1,f(x2,x3)) x4

e1:n 0 0 1 1

c1:n 0 0 1 0

Generate composition probabilities

x1:n --- --- --- f(f(x1,f(x2,x3)),x4)

e1:n 0 0 0 1

Update

When the complete tree is validly induced, the final pattern of existential
probabilities is the same (0,0,0…,1).

Dynamic Halt

x1:n --- --- f(x1,f(x2,x3)) x4

e1:n 0 0 1 1

Iteration 3

x1:n --- --- f(x1,f(x2,x3)) x4

e1:n 0 0 1 1

c1:n 0 0 1 0

Generate composition probabilities

x1:n --- --- --- f(f(x1,f(x2,x3)),x4)

e1:n 0 0 0 1

Update

Halt early when existential
probabilities are close to this
pattern.

When the complete tree is validly induced, the final pattern of existential
probabilities is the same (0,0,0…,1).

Experiments and Results

Datasets and Tasks
Synthetic Tasks

1. Logical Inference[1]

2. ListOps[2]

Natural Language Tasks
1. Natural Language Inference (SNLI[3], MultiNLI[4])
2. Sentiment Classification (SST2[5], SST5[5])

[1] Tree-structured composition in neural networks without tree-structured architectures” Bowman et al. International Conference on Cognitive
Computation: Integrating Neural and Symbolic Approaches 2015
[2] “ListOps: A Diagnostic Dataset for Latent Tree Learning” Nangia et al. NAACL 2018
[3] “A large annotated corpus for learning natural language inference” Bowman et al. EMNLP 2015
[4] “A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference” Bowman et al. NAACL 2018
[5] “Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank” Socher et al. EMNLP 2013

Logical Inference[1]

Need to predict the relationship: entailment (⊏,⊐) ,
independence (#), or something else?

Figure from: “The importance of being recurrent for modeling hierarchical structure” Tran et al. EMNLP 2018.
[1] “Tree-structured composition in neural networks without tree-structured architectures” Bowman et al. International Conference on
Cognitive Computation: Integrating Neural and Symbolic Approaches 2015

Logical Inference

● Accuracy on Logical
Inference dataset.

● Trained on data with less
than 7 no. of operations.

981 means a standard deviation of +-0.1
*means that the results are reported from [1]

[1] “Ordered Memory” Shen et al. NeurIPS 2019

ListOps[1]

Multi-class (0-9) classification task

Figure from [1]
[1] “ListOps: A Diagnostic Dataset for Latent Tree Learning” Nangia et al. NAACL 2018

ListOps

Results with * were taken from [1]. ‡ indicates that the results were taken from [2].† indicates that the results were taken from [3].

[1] “Ordered Memory” Shen et al. NeurIPS 2019
[2] “ListOps: A Diagnostic Dataset for Latent Tree Learning” Nangia et al. NAACL 2018
[3] “Cooperative Learning of Disjoint Syntax and Semantics” Havrylov et al. NAACL 2019

ListOps Length Extrapolation

Natural Language Tasks

Accuracy on multiple natural language datasets. * indicates that the results were taken from [1] .† indicates that the results
were taken from [2].‡ indicates that the results were taken from [3].†† indicates that the results were taken from [4]. 901= 90±0.1.

[1] “Ordered Memory” Shen et al. NeurIPS 2019
[2] “Cooperative Learning of Disjoint Syntax and Semantics” Havrylov et al. NAACL 2019
[3] “Do latent tree learning models identify meaningful structure in sentences?” Williams et al. TACL 2018
[4] “Learning to Compose Task-Specific Tree Structures” Choi et al. AAAI 2018

Acknowledgments

Thank You

Jishnu Ray Chowdhury (jraych2@uic.edu)

Cornelia Caragea (cornelia@uic.edu)

Github: https://github.com/JRC1995/Continuous-RvNN

mailto:jraych2@uic.edu
mailto:cornelia@uic.edu
https://github.com/JRC1995/Continuous-RvNN

