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… leads to local optima and poor sample complexity 
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Experiments: Sparse Reward 3D Visual Navigation
 

● Task: go to the goal = key / block, 
color specified by the sign

● Agent starts on other side of barrier 
and must walk around to read the sign

● Pixels observations (80 x 60 RGB)

● Sparse binary reward

● Existing benchmarks don’t typically 
use pixel observations and sparse 
rewards

More challenging variant of task from Kamienny et al., 2020
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● Only DREAM scales to high-dimensional 
states and sparse rewards

● End-to-end approaches achieve zero 
returns due to coupling problem

● Decoupled approaches, e.g., Thompson 
Sampling do not learn the optimal 
exploration strategy
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end-to-end methods from solving tasks with challenging exploration

II. DREAM provides separate exploration and exploitation objectives that 
avoid the coupling problem
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