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Re-learning from scratch is expensive and sample inefficient



Goal: quickly learn new tasks

How? Leverage prior experience



Goal: quickly learn new tasks

meta-training

How? Leverage prior experience



Goal: quickly learn new tasks

meta-training meta-testing

How? Leverage prior experience



Goal: quickly learn new tasks

meta-training explore

How? Leverage prior experience

Icons made by Freepik and Thoselcons on flaticon.com



Goal: quickly learn new tasks

meta-training

How? Leverage prior experience

Icons made by Freepik and Thoselcons on flaticon.com



End-to-End Meta-Reinforcement Learning

Natural approach: Optimize exploration and exploitation end-to-end to maximize returns

Duan et al., 2016; Wang et al., 2016; Mishra et al., 2017; Stadie et al., 2018; Zintgraf et al., 2019; Kamienny et al., 2020



End-to-End Meta-Reinforcement Learning

Natural approach: Optimize exploration and exploitation end-to-end to maximize returns

Learning to explore
ohay

L&

Coupling problem: learning exploration and exploitation depend on each other

Duan et al., 2016; Wang et al., 2016; Mishra et al., 2017; Stadie et al., 2018; Zintgraf et al., 2019; Kamienny et al., 2020



End-to-End Meta-Reinforcement Learning

Natural approach: Optimize exploration and exploitation end-to-end to maximize returns

Learning to explore
ohay

L &

@)
@?

Coupling problem: learning exploration and exploitation depend on each other

Duan et al., 2016; Wang et al., 2016; Mishra et al., 2017; Stadie et al., 2018; Zintgraf et al., 2019; Kamienny et al., 2020



End-to-End Meta-Reinforcement Learning

Natural approach: Optimize exploration and exploitation end-to-end to maximize returns

Learning to explore

< O o
) =,

Coupling problem: learning exploration and exploitation depend on each other

Duan et al., 2016; Wang et al., 2016; Mishra et al., 2017; Stadie et al., 2018; Zintgraf et al., 2019; Kamienny et al., 2020



End-to-End Meta-Reinforcement Learning

Natural approach: Optimize exploration and exploitation end-to-end to maximize returns
Always
Learning to explore low reward

@/\

()t

&
Coupling problem: learning exploration and exploitation depend on each other

Duan et al., 2016; Wang et al., 2016; Mishra et al., 2017; Stadie et al., 2018; Zintgraf et al., 2019; Kamienny et al., 2020



End-to-End Meta-Reinforcement Learning

Natural approach: Optimize exploration and exploitation end-to-end to maximize returns
Always
Learning to explore low reward

@/\

Cannot learn
to find
ingredients

Coupling problem: learning exploration and exploitation depend on each other

Duan et al., 2016; Wang et al., 2016; Mishra et al., 2017; Stadie et al., 2018; Zintgraf et al., 2019; Kamienny et al., 2020



End-to-End Meta-Reinforcement Learning
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Coupling problem: learning exploration and exploitation depend on each other
... leads to local optima and poor sample complexity
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Goal: Create exploration objective to all and only recover task-relevant information

Key (mild) assumption: can distinguish all meta-training tasks from each other
with a unique problem ID
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DREAM Overview
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Experiments: Sparse Reward 3D Visual Navigation

Task: go to the goal = key / block,
color specified by the sign

Agent starts on other side of barrier
and must walk around to read the sign

Pixels observations (80 x 60 RGB)
Sparse binary reward
Existing benchmarks don't typically

use pixel observations and sparse
rewards
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Experiments: Quantitative Results
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Experiments: Quantitative Results

Average Returns
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Decoupled approaches, e.g., Thompson
Sampling do not learn the optimal
exploration strategy



Takeaways

|. Coupling between exploration and exploitation prevents existing
end-to-end methods from solving tasks with challenging exploration
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Takeaways

Il. DREAM provides separate exploration and exploitation objectives that
avoid the coupling problem



