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Non-parametric Upper-Confidence Bound

Assumption.

• The distribution has support D ⊆ [0,1].

Definition.

Given a confidence level 1− α ∈ (0,1), an upper confidence bound µ1−α
upper has guaranteed

coverage if, for all sample sizes 1 ≤ n ≤ ∞ and for all distributions F with support on [0,1], it
satisfies

ProbF[µ ≤ µ1−α
upper(X1,X2, ..., Xn)] ≥ 1− α, (1)

where µ is the mean of the unknown distribution F.
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Existing Results

Existing confidence bounds for the mean of distributions with support D ⊆ [0,1].

• With guarantees, but bad performance for small samples (Maurer-Pontil, Hoeffding and
Anderson)

• No guarantees (assume Gaussianity), good performance for small samples (Student-t)

Figure 1: The expectation of the confidence bounds for small samples. .
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Existing Results

Existing confidence bounds for the mean of distributions with support D ⊆ [0,1].

• With guarantees, but bad performance for small samples (Maurer-Pontil, Hoeffding and
Anderson)

• No guarantees (assume Gaussianity), good performance for small samples (Student-t).

Figure 2: The α-quantile of the confidence bounds for small samples. Student-t does not have
guarantee for small sample size.
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Motivations

Consider the problem of finding mean bounds for small sample sizes. Examples:

• Phase 1 Clinical Trial.
• Safe Reinforcement Learning: importance-weighted estimators are used to estimate the
policy’s return.

Figure 3: The sample mean of importance-weighted estimator is skewed even for large sample size.
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Problem Statement

Find an upper confidence bound:

• with guaranteed coverage for distributions on [0,1]

• with good performance for small sample size
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Our Bound

• Input:
• A sample x = (x1, · · · , xn) of size n.
• A confidence level α.
• A function T : [0, 1]n → R.

• Example: T(x) is the sample mean of x.

• Output: upper-confidence bound bα
T (x).

• Our bound is parameterized by a function T. Function T defines the order of the bound:
If T(x) ≤ T(y) then bα

T (x) ≤ bα
T (y).

• Note: Hoeffding’s bound and Student-t’s bound order the samples by the sample mean.
• We produce a guaranteed bound with any function T.
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Theoretical Results

A new bound with guarantee coverage and good performance:

• For any sample size, for any α, for any sample x, our bound is smaller than or equal to
Anderson’s [Anderson, 1969], one of the best bound for small sample sizes.
• For any sample size, for any α, for any sample x, Anderson’s bound is smaller than or equal

to Hoeffding [Hoeffding, 1963].

• Therefore for any sample size, for any α, for any sample x, our bound is smaller than or
equal to Hoeffding’s.
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Computation

• We use Monte Carlo simulation to compute the bound.
• The Monte Carlo output is proven to converge to the theoretical value of the bound as the

number of Monte Carlo samples increases.
• Given any error threshold ϵ > 0, it is possible to compute the number of Monte Carlo

samples required such that with probability at least 1− α:

µ ≤ b̂α
T (x) ≤ bα

T (x) + ϵ (2)

where bα
T (x) is the theoretical value of the bound and b̂α

T (x) is the Monte Carlo output.
• Computing the bound for one time takes seconds.

• The bound outputs the same value for samples x with the same T(x). Therefore we can
pre-compute a table mapping T(x) to the value of the bound.
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Simulations i

Figure 4: Expected values of the bounds versus sample size n. For each n, we sample X ∈ Rn 10,000
times, and take the average of the bound. Our new bound has better performance than Anderson’s,
Hoeffding’s and Maurer and Pontil’s.
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Simulations ii

Figure 5: The α-quantiles of bound distributions. If α portion of the samples’ bound is below the true
mean, the bound does not have guarantee. For the uniform(0, 1) and beta(1, 5) distribution, when
the sample size is small, Student-t does not have guarantee.
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Thank You!

My Phan
myphan@cs.umass.edu
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