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Non-parametric Upper-Confidence Bound

Assumption.
e The distribution has support D C [0, 1].

Definition.

Given a confidence level 1 — a € (0,1), an upper confidence bound ji{,pe, has guaranteed
coverage if, for all sample sizes 1 < n < oo and for all distributions F with support on [0, 1], it
satisfies

Probe[p < puypper(X1, X2, s Xp)] > 1 — @, (1)

where p is the mean of the unknown distribution F.
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Existing Results

Existing confidence bounds for the mean of distributions with support D C [0, 1].

e With guarantees, but bad performance for small samples (Maurer-Pontil, Hoeffding and
Anderson)

e No guarantees (assume Gaussianity), good performance for small samples (Student-t)
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Figure 1: The expectation of the confidence bounds for small samples. .
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Existing Results

Existing confidence bounds for the mean of distributions with support D C [0, 1].
e With guarantees, but bad performance for small samples (Maurer-Pontil, Hoeffding and
Anderson)

* No guarantees (assume Gaussianity), good performance for small samples (Student-t).
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Figure 2: The a-quantile of the confidence bounds for small samples. Student-t does not have

guarantee for small sample size.
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Motivations

Consider the problem of finding mean bounds for small sample sizes. Examples:

e Phase 1 Clinical Trial.
e Safe Reinforcement Learning: importance-weighted estimators are used to estimate the

policy’s return.
Source = Gaussian(0,1), Target = beta(4,1}

BN Sample size = 300

02 0.4 0.6 0.8 10 12 14 16

Figure 3: The sample mean of importance-weighted estimator is skewed even for large sample size.
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Problem Statement

Find an upper confidence bound:

e with guaranteed coverage for distributions on [0, 1]

* with good performance for small sample size
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* Input:
e Asample x = (x1,- -+, xp) of size n.

¢ A confidence level a.
e Afunction T:[0,1]" — R.

e Example: T(x) is the sample mean of x.
e Output: upper-confidence bound b%(x).
e Our bound is parameterized by a function T. Function T defines the order of the bound:
If T(x) < T(y) then b3 (x) < bg(y).
e Note: Hoeffding’s bound and Student-t's bound order the samples by the sample mean.
e We produce a guaranteed bound with any function T.
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Theoretical Results

A new bound with guarantee coverage and good performance:

e For any sample size, for any «, for any sample x, our bound is smaller than or equal to
Anderson’s [Anderson, 1969], one of the best bound for small sample sizes.

e For any sample size, for any «, for any sample x, Anderson’s bound is smaller than or equal
to Hoeffding [Hoeffding, 1963].

* Therefore for any sample size, for any «, for any sample x, our bound is smaller than or
equal to Hoeffding’s.
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Computation

e We use Monte Carlo simulation to compute the bound.
e The Monte Carlo output is proven to converge to the theoretical value of the bound as the
number of Monte Carlo samples increases.
e Given any error threshold e > 0, it is possible to compute the number of Monte Carlo
samples required such that with probability at least 1 — «a:

o

n < b7 (x) < b7 (x) +€ (2)

—

where bf(x) is the theoretical value of the bound and b¢(x) is the Monte Carlo output.
e Computing the bound for one time takes seconds.

e The bound outputs the same value for samples x with the same T(x). Therefore we can
pre-compute a table mapping 7(x) to the value of the bound.
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Simulations i
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Figure 4: Expected values of the bounds versus sample size n. For each n, we sample X € R" 10,000
times, and take the average of the bound. Our new bound has better performance than Anderson’s,
Hoeffding’s and Maurer and Pontil’s.
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Simulations
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Figure 5: The a-quantiles of bound distributions. If & portion of the samples” bound is below the true
mean, the bound does not have guarantee. For the uniform(0,1) and beta(1,5) distribution, when
the sample size is small, Student-t does not have guarantee.
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Thank You!

My Phan
myphan@cs.umass.edu



References i

References

T. W. Anderson. Confidence limits for the value of an arbitrary bounded random variable
with a continuous distribution function. Technical Report Number 1, Department of
Statistics, Stanford University, 1969.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13-30, 1963.

Towards Practical Mean Bounds for Small Samples 11



	References

