

Towards Practical Mean Bounds for Small Samples

My Phan, Philip Thomas, Erik Learned-Miller

July 22, 2021

University of Massachusetts - Amherst

Assumption.

- The distribution has support $\mathcal{D} \subseteq [0, 1]$.

Definition.

Given a confidence level $1 - \alpha \in (0, 1)$, an upper confidence bound $\mu_{upper}^{1-\alpha}$ has *guaranteed coverage* if, for all sample sizes $1 \leq n \leq \infty$ and for all distributions F with support on $[0, 1]$, it satisfies

$$Prob_F[\mu \leq \mu_{upper}^{1-\alpha}(X_1, X_2, \dots, X_n)] \geq 1 - \alpha, \quad (1)$$

where μ is the mean of the unknown distribution F .

Existing Results

Existing confidence bounds for the mean of distributions with support $\mathcal{D} \subseteq [0, 1]$.

- With guarantees, but bad performance for small samples (Maurer-Pontil, Hoeffding and Anderson)
- No guarantees (assume Gaussianity), good performance for small samples (Student-t)

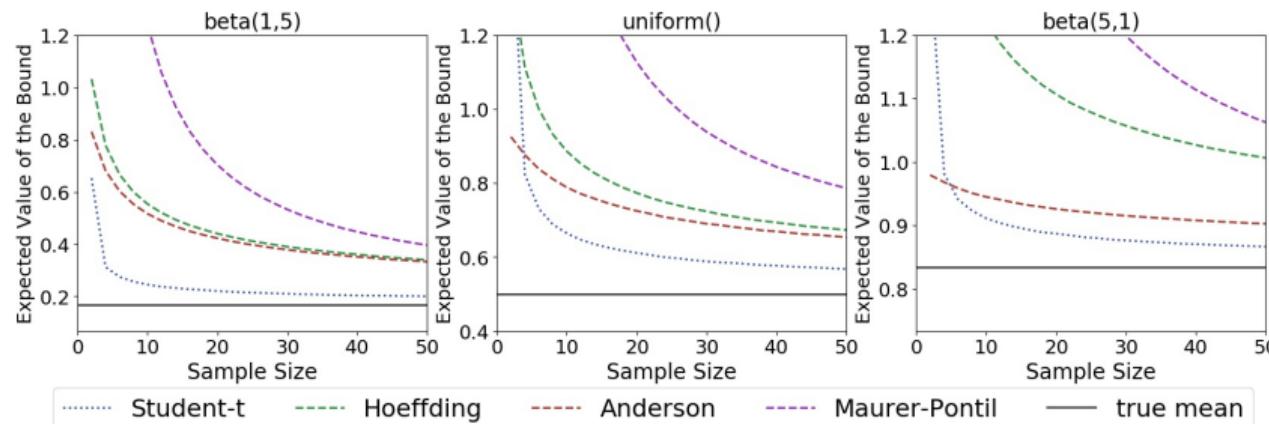


Figure 1: The expectation of the confidence bounds for small samples. .

Existing Results

Existing confidence bounds for the mean of distributions with support $\mathcal{D} \subseteq [0, 1]$.

- With guarantees, but bad performance for small samples (Maurer-Pontil, Hoeffding and Anderson)
- No guarantees (assume Gaussianity), good performance for small samples (Student-t).

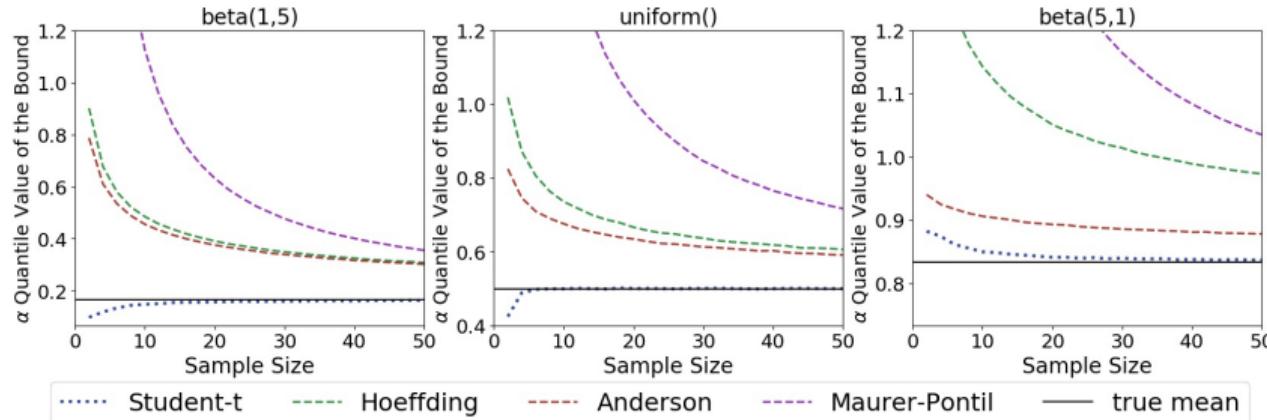


Figure 2: The α -quantile of the confidence bounds for small samples. Student-t does not have guarantee for small sample size.

Motivations

Consider the problem of finding mean bounds for **small** sample sizes. Examples:

- Phase 1 Clinical Trial.
- Safe Reinforcement Learning: importance-weighted estimators are used to estimate the policy's return.

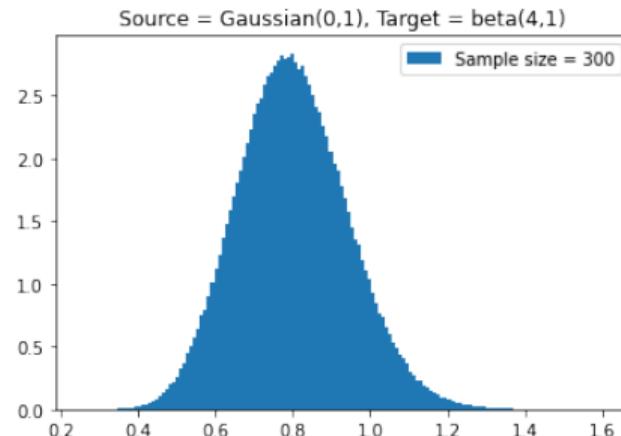


Figure 3: The sample mean of importance-weighted estimator is skewed even for large sample size.

Problem Statement

Find an upper confidence bound:

- with guaranteed coverage for distributions on $[0, 1]$
- with good performance for small sample size

Our Bound

- Input:
 - A sample $\mathbf{x} = (x_1, \dots, x_n)$ of size n .
 - A confidence level α .
 - A function $T : [0, 1]^n \rightarrow \mathbb{R}$.
 - Example: $T(\mathbf{x})$ is the sample mean of \mathbf{x} .
- Output: upper-confidence bound $b_T^\alpha(\mathbf{x})$.
- Our bound is parameterized by a function T . Function T defines the order of the bound:
If $T(\mathbf{x}) \leq T(\mathbf{y})$ then $b_T^\alpha(\mathbf{x}) \leq b_T^\alpha(\mathbf{y})$.
 - Note: Hoeffding's bound and Student-t's bound order the samples by the sample mean.

Theoretical Results

A new bound with **guarantee coverage** and **good performance**:

- For any sample size, for any α , **for any sample \mathbf{x}** , our bound is smaller than or equal to Anderson's [Anderson, 1969], one of the best bound for small sample sizes.
 - For any sample size, for any α , **for any sample \mathbf{x}** , Anderson's bound is smaller than or equal to Hoeffding [Hoeffding, 1963].
- Therefore for any sample size, for any α , **for any sample \mathbf{x}** , our bound is smaller than or equal to Hoeffding's.

Simulations i

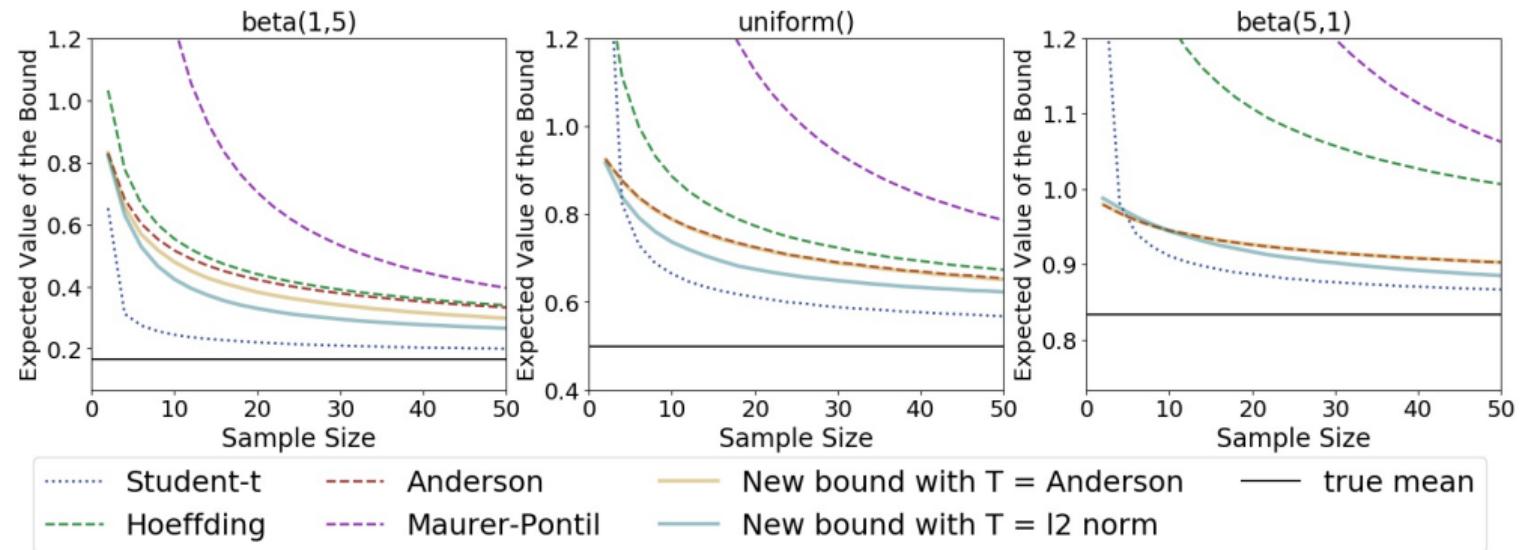


Figure 4: Expected values of the bounds versus sample size n . For each n , we sample $\mathbf{X} \in \mathcal{R}^n$ 10,000 times, and take the average of the bound. Our new bound has better performance than Anderson's, Hoeffding's and Maurer and Pontil's.

Simulations ii

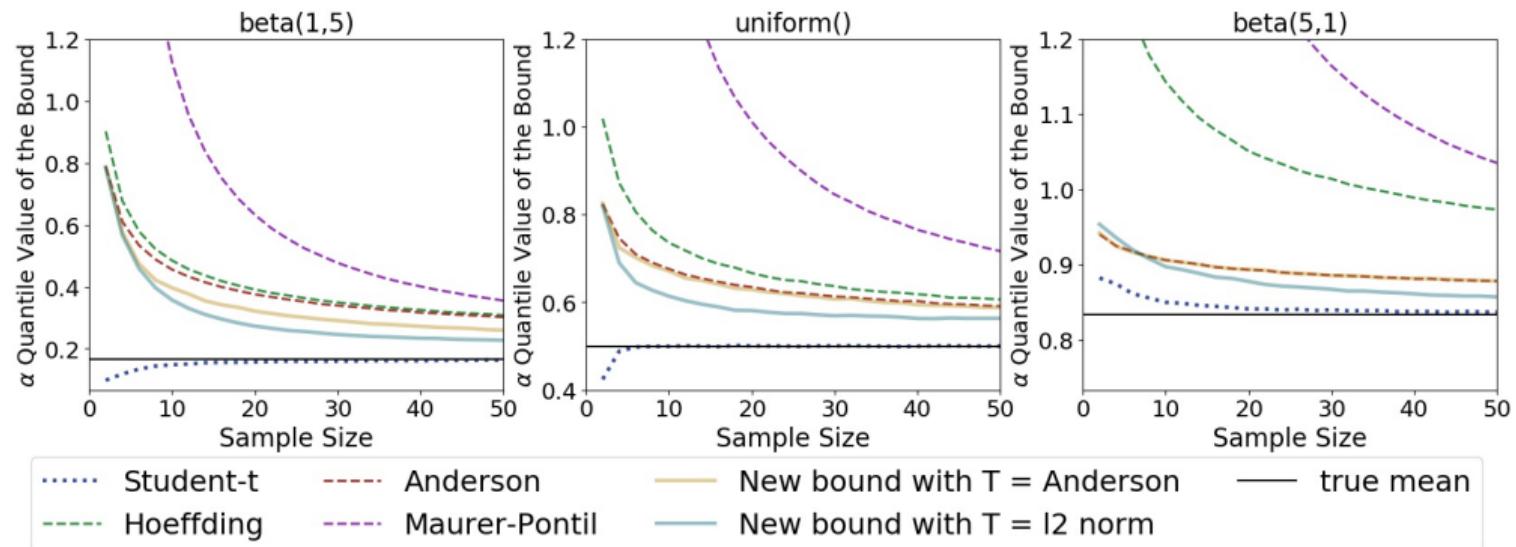


Figure 5: The α -quantiles of bound distributions. If α portion of the samples' bound is below the true mean, the bound does not have guarantee. For the *uniform*(0, 1) and *beta*(1, 5) distribution, when the sample size is small, Student-t does not have guarantee.

Thank You!

My Phan

myphan@cs.umass.edu

References

T. W. Anderson. Confidence limits for the value of an arbitrary bounded random variable with a continuous distribution function. *Technical Report Number 1, Department of Statistics, Stanford University*, 1969.

W. Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the American Statistical Association*, 58(301):13–30, 1963.