GMAC: A Distributional Perspective to Actor-Critic Framework

Daniel Wontae Nam, Younghoon Kim, Chan Y. Park

ML2

KC Machine Learning Lab

ICML 2021

GMAC – Gaussian Mixture Actor-Critic

• Distributional RL: Comprehensive distributional actor-critic framework called <u>Gaussian Mixture Actor-Critic (GMAC)</u> which uses

$SR(\lambda)$ – Sample Replacement

Finding the distributional λ -return in linear time

Apply Bellman operation to the samples given at time t=N

$SR(\lambda)$ – Sample Replacement

Finding the distributional λ -return in linear time

Mix the resulting samples to the samples in t=N-1 with the probability $1 - \lambda$

$SR(\lambda)$ – Sample Replacement

Finding the distributional λ -return in linear time

Repeat until the beginning of the trajectory and $Z_t^{(\lambda)}$ is obtained for all t

$$F_{Z_t^{(\lambda)}} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} F_{Z_t^{(n)}}$$

Energy Distance from the Cramér distance

Minimize the energy distance between obtained Bellman target distribution and the prediction

Cramer Distance

$$l_p(P,Q) = \left(\int_{-\infty}^{\infty} \left|F_P(x) - F_Q(x)\right|^p dx\right)^{1/p}$$

Energy Distance

$$2l_2^2(P,Q) = \mathcal{E}(P,Q)$$

$$= 2\mathbb{E} \|U - V\|_{2} - \mathbb{E} \|U - U'\|_{2} - \mathbb{E} \|V - V'\|_{2},$$
$$U, U' \sim P, \qquad V, V' \sim Q$$

Learning the right value distribution

• Value distribution learned from actual game of Breakout from ALE through multi-step Bellman return distribution

Improvement in performance

On Atari ALE tasks (57 that have human normalized scores)

FLOPs comparison to IQN architectures

	Denoma (M)	FLOPs (G)	
Algorithm	Params (M)	Inference	Update
PPO	0.44	1.73	5.19
IQAC	0.52	2.98	12.98
IQAC-E	0.52	2.98	8.98
GMAC	0.44	1.73	5.27

Wall clock time comparison to imputation strategy (using SciPy) on tabular case

ER-naive	ER-imputation	Energy	GM
0.0021	0.0340	0.0011	0.0035

8

GMAC

$SR(\lambda)$ | Energy Distance | Gaussian Mixture Model

• Efficient algorithm to obtain and learn distributional value function for actor-critic methods like PPO that uses multi-step returns, e.g. λ -return

Code: <u>https://github.com/kc-ml2/gmac</u> Our website: https://www.kc-ml2.com/

Daniel Wontae Nam, Younghoon Kim, Chan Y. Park

