# Order Matters: Probabilistic Modeling of **Node Sequence for Graph Generation**



- Xiaohui Chen <sup>\*1</sup> Xu Han <sup>\*1</sup> Jiajing Hu <sup>1</sup> Francisco J. R. Ruiz<sup>2</sup> Liping Liu<sup>1</sup>
  - <sup>1</sup>Tufts University, US, <sup>2</sup>DeepMind, UK \*Equal Contribution



Two types of autoregressive models:

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020]

Consider noder orderings (1,3,5,2,4) and (1,2,4,3,5) and adjacency matrix  $A = L + L^T$ 

 $P(A) = P(\bigotimes$ 



Graph G Node ordering  $\pi$ 

$$P(L_{t,:} | L_{1:(t-1)})$$



Two types of autoregressive models:

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020]

Consider noder orderings (1,3,5,2,4) and (1,2,4,3,5) and adjacency matrix  $A = L + L^T$ 

 $P(A) = P(\bigotimes$ 



Graph G Node ordering  $\pi$ 

$$(D) \prod_{t=2}^{n} P(L_{t,:} | L_{1:(t-1)})$$



Two types of autoregressive models:

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020]

Consider noder orderings (1,3,5,2,4) and (1,2,4,3,5) and adjacency matrix  $A = L + L^T$ 

 $P(A) = P(\bigotimes$ 



Graph G Node ordering  $\pi$ 

$$(D) \prod_{t=2}^{n} P(L_{t,:} | L_{1:(t-1)})$$



Two types of autoregressive models:

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020]

Consider noder orderings (1,3,5,2,4) and (1,2,4,3,5) and adjacency matrix  $A = L + L^T$ 

 $P(A) = P(\bigotimes$ 



Graph G Node ordering  $\pi$ 

$$(D) \prod_{t=2}^{n} P(L_{t,:} | L_{1:(t-1)})$$



Two types of autoregressive models:

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020]

Consider noder orderings (1,3,5,2,4) and (1,2,4,3,5) and adjacency matrix  $A = L + L^T$ 

 $P(A) = P(\bigotimes$ 



Graph G Node ordering  $\pi$ 

$$(D) \prod_{t=2}^{n} P(L_{t,:} | L_{1:(t-1)})$$



Two types of autoregressive models:

- 1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020]
- 2. Based on graph sequence [Li et al., 2018]



xiaohui.chen@tufts.edu

Consider node orderings (1,3,5,2,4), (1,2,4,3,5), (3,5,1,2,4), (5,3,1,2,4) and graph sequence  $G_{1:5}$ 





Two types of autoregressive models:

- 1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020]
- 2. Based on graph sequence [Li et al., 2018]



xiaohui.chen@tufts.edu

Consider node orderings (1,3,5,2,4), (1,2,4,3,5), (3,5,1,2,4), (5,3,1,2,4) and graph sequence  $G_{1:5}$ 





Two types of autoregressive models:

- 1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020]
- 2. Based on graph sequence [Li et al., 2018]



xiaohui.chen@tufts.edu

Consider node orderings (1,3,5,2,4), (1,2,4,3,5), (3,5,1,2,4), (5,3,1,2,4) and graph sequence  $G_{1,5}$ 





Two types of autoregressive models:

- 1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020]
- 2. Based on graph sequence [Li et al., 2018]



xiaohui.chen@tufts.edu

Consider node orderings (1,3,5,2,4), (1,2,4,3,5), (3,5,1,2,4), (5,3,1,2,4) and graph sequence  $G_{1:5}$ 





Two types of autoregressive models:

- 1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020]
- 2. Based on graph sequence [Li et al., 2018]



xiaohui.chen@tufts.edu

Consider node orderings (1,3,5,2,4), (1,2,4,3,5), (3,5,1,2,4), (5,3,1,2,4) and graph sequence  $G_{1:5}$ 





**Observations:** 

- 1. A graph G does not naturally have a unique adjacency matrix A or sequence G
  - For that, we need to choose a node ordering  $\pi$
  - A tuple  $(G, \pi)$  uniquely determines  $A/G_{1:n}$ , then we can fit the likelihood  $p(A)/p(G_{1:n})$
- 2. There are multiple  $(G, \pi)$ -s leading to the same  $A/G_{1\cdot n}$  due to the graph automorphism







# Bridging Node Ordering $\pi$ and $A/G_{1:n}$

• To fit a graph model via MLE, we need the marginal likelihood

$$P(G) = \sum_{\mathbf{A} \in \mathscr{A}(G)} P(\mathbf{A}) \qquad p(G)$$

• The marginalization space of  $A/G_{1:n}$  is very hard to characterize, while the space of  $\pi$  is very easy

$$P(G) = \sum_{(G,\pi)} P$$

• Relation between  $P(A)/P(G_{1:n})$  and  $P(G, \pi)$ 

$$P(G, \pi) = \frac{1}{|\Pi[A]|} P(A); \quad |\Pi[A]| = \text{number of graph automorphism}$$
$$= \frac{1}{|\Pi[G_{1:n}]|} P(G_{1:n}); \quad |\Pi[G_{1:n}]| = \sum_{i=1}^{n} \text{ orbit count of target node } i \text{ at } G_i$$

## xiaohui.chen@tufts.edu

$$p(G) = \sum_{G_{1:n}: G_n = G} p(G_{1:n})$$

 $P(G,\pi)$ 



# Bridging Node Ordering $\pi$ and $A/G_{1.n}$ : Example





# **Optimizing the Node ordering**

- Introduce a variational distribution  $q(\pi | G)$  to approximate  $p(\pi | G)$ 
  - Parameterizing  $q_{\phi}(\pi \mid G)$  using GNN
  - sample node recurrently to generate node ordering  $\pi$



Maximize ELBO w.r.t generative model  $\theta$  and variational parameters  $\phi$ 

$$L(\theta, \phi, G) = \mathrm{E}_{q_{\phi}(\pi | G)}$$

### xiaohui.chen@tufts.edu

 $\sum_{\theta \in G} \left[ \log p_{\theta}(G, \pi) - \log q_{\phi}(\pi \mid G) \right]$ 



## **Optimizing the Node ordering**

Algorithm 1 VI algorithm for training a graph model based on the adjacency matrix  $\mathbf{A}$ **Input:** Dataset of graphs  $\mathcal{G} = \{G_1, \ldots, G_n\}$ , model  $p_{\theta}$ , variational distribution  $q_{\phi}$ , sample size S **Output:** Learned parameters  $\theta$  and  $\phi$ repeat for  $G \in \mathcal{G}$  do Sample  $\pi^{(1)}, \ldots,$ Obtain  $\mathbf{A}^{(s)}$  from Set  $p_{\theta}(G, \pi^{(s)}) =$ Compute  $\nabla_{\phi} \leftarrow \nabla$ Compute  $\nabla_{\theta} \leftarrow \nabla$  $^{7}\theta$ Update  $\phi$ ,  $\theta$  using end for **until** convergence of the parameters  $(\theta, \phi)$ 

$$\pi^{(S)} \stackrel{\text{iid}}{\sim} q_{\phi}(\pi|G)$$

$$= \frac{1}{|\Pi[\mathbf{A}^{(s)}]|} p_{\theta}(\mathbf{A}^{(s)})$$

$$\nabla_{\phi} L(\theta, \phi, G)$$

$$\nabla_{\theta} L(\theta, \phi, G)$$

$$= \text{the gradients } \nabla_{\phi}, \nabla$$



# Experiment: Predictive Log-Likelihood

|           | Community-small                          | Citeseer-small                                                                                                                                                                               | Enzymes                                                                                                                                                                       | Lung                                                                                                                                                                                                                                                    | Yeast                                                                                                                                                                                                                                                                                                                             | Cora                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | log-like/ELBO                            | log-like/ELBO                                                                                                                                                                                | log-like/ELBO                                                                                                                                                                 | log-like/ELBO                                                                                                                                                                                                                                           | log-like/ELBO                                                                                                                                                                                                                                                                                                                     | log-like/ELBC                                                                                                                                                                                                                                                                                                                                                                                              |
| uniform   | -206.2/-303.9                            | -60.9/-67                                                                                                                                                                                    | -281.9/-290.8                                                                                                                                                                 | -146.7/-225.7                                                                                                                                                                                                                                           | -115.1/128.9                                                                                                                                                                                                                                                                                                                      | -283.7/-295.2                                                                                                                                                                                                                                                                                                                                                                                              |
| VI [ours] | -124.8/-131.8                            | -59.6/-65.6                                                                                                                                                                                  | -145.8/-156.2                                                                                                                                                                 | -146.1/-224.6                                                                                                                                                                                                                                           | -105.4/-115.7                                                                                                                                                                                                                                                                                                                     | -227/-247.2                                                                                                                                                                                                                                                                                                                                                                                                |
| uniform   | -154.6/-157.6                            | -101.9/-105.7                                                                                                                                                                                | -340.3/-349.1                                                                                                                                                                 | -232.4/ -242.2                                                                                                                                                                                                                                          | -189.3/-200.1                                                                                                                                                                                                                                                                                                                     | -380.6/-401.8                                                                                                                                                                                                                                                                                                                                                                                              |
| VI [ours] | -53.7/-59.9                              | -89.6/-93.2                                                                                                                                                                                  | -274.9/-282.8                                                                                                                                                                 | -155.9/-175.8                                                                                                                                                                                                                                           | -109.1/-133.7                                                                                                                                                                                                                                                                                                                     | -345.3/-358.3                                                                                                                                                                                                                                                                                                                                                                                              |
| DFS       | -263.74/NA                               | -73.0/NA                                                                                                                                                                                     | -574.2/NA                                                                                                                                                                     | -140.1/NA                                                                                                                                                                                                                                               | -66.46/NA                                                                                                                                                                                                                                                                                                                         | -199.5/NA                                                                                                                                                                                                                                                                                                                                                                                                  |
| VI [ours] | -26.6/-35.0                              | -64.3/-71.1                                                                                                                                                                                  | -189.7/-213.8                                                                                                                                                                 | -117.3/-125.5                                                                                                                                                                                                                                           | -64.98/-72.39                                                                                                                                                                                                                                                                                                                     | -143.6/-152.3                                                                                                                                                                                                                                                                                                                                                                                              |
|           | VI [ours]<br>uniform<br>VI [ours]<br>DFS | log-like/ELBO         uniform       -206.2/-303.9         VI [ours]       -124.8/-131.8         uniform       -154.6/-157.6         VI [ours]       -53.7/-59.9         DFS       -263.74/NA | log-like/ELBOlog-like/ELBOuniform-206.2/-303.9-60.9/-67VI [ours]-124.8/-131.8-59.6/-65.6uniform-154.6/-157.6-101.9/-105.7VI [ours]-53.7/-59.9-89.6/-93.2DFS-263.74/NA-73.0/NA | log-like/ELBOlog-like/ELBOlog-like/ELBOuniform-206.2/-303.9-60.9/-67-281.9/-290.8VI [ours]-124.8/-131.8-59.6/-65.6-145.8/-156.2uniform-154.6/-157.6-101.9/-105.7-340.3/-349.1VI [ours]-53.7/-59.9-89.6/-93.2-274.9/-282.8DFS-263.74/NA-73.0/NA-574.2/NA | log-like/ELBOlog-like/ELBOlog-like/ELBOlog-like/ELBOuniform-206.2/-303.9-60.9/-67-281.9/-290.8-146.7/-225.7VI [ours]-124.8/-131.8-59.6/-65.6-145.8/-156.2-146.1/-224.6uniform-154.6/-157.6-101.9/-105.7-340.3/-349.1-232.4/-242.2VI [ours]-53.7/-59.9-89.6/-93.2-274.9/-282.8-155.9/-175.8DFS-263.74/NA-73.0/NA-574.2/NA-140.1/NA | log-like/ELBOlog-like/ELBOlog-like/ELBOlog-like/ELBOlog-like/ELBOuniform-206.2/-303.9-60.9/-67-281.9/-290.8-146.7/-225.7-115.1/128.9VI [ours]-124.8/-131.8-59.6/-65.6-145.8/-156.2-146.1/-224.6-105.4/-115.7uniform-154.6/-157.6-101.9/-105.7-340.3/-349.1-232.4/-242.2-189.3/-200.1VI [ours]-53.7/-59.9-89.6/-93.2-274.9/-282.8-155.9/-175.8-109.1/-133.7DFS-263.74/NA-73.0/NA-574.2/NA-140.1/NA-66.46/NA |

Approximate log-likelihood and ELBO of different generative models. For each model, we compare the default training algorithm with our method based on VI. The table shows

- 1) VI improves the model's predictive performance.
- 2) The variational bound is relatively tight.







# Experiment: Qualitative Analysis



0 2



0 2 4 6 8 10 12 14 16 18 Community-small

0 2 4 6

8 10 12 14 16 18

xiaohui.chen@tufts.edu

0



- 1.0

- 0.8

0.6

- 0.2

- 0.0

20

8 10 12 14 16 18 20 22

Enzymes

0 2

8 10 12 14 16 18 20 22

0 2 4 6 8 10 12 14 16 18 20 22

# Experiment: Qualitative Analysis



0 2



0 2 4 6 8 10 12 14 16 18 Community-small

0 2 4 6

8 10 12 14 16 18

xiaohui.chen@tufts.edu

0



- 1.0

- 0.8

0.6

- 0.2

- 0.0

20

8 10 12 14 16 18 20 22

Enzymes

0 2

8 10 12 14 16 18 20 22

0 2 4 6 8 10 12 14 16 18 20 22

# Experiment: Quality of Generated Graphs

|          |           | Community-small |       |       | Citeseer-small |       |       | Enzymes |       |       |  |
|----------|-----------|-----------------|-------|-------|----------------|-------|-------|---------|-------|-------|--|
|          |           | Deg.            | Clus. | Orbit | Deg.           | Clus. | Orbit | Deg.    | Clus. | Orbit |  |
| DeepGMG  | uniform   | 0.2             | 0.978 | 0.40  | 0.052          | 0.06  | 0.005 | 1.51    | 0.95  | 0.29  |  |
|          | VI [ours] | 0.178           | 0.921 | 0.338 | 0.028          | 0.014 | 0.005 | 1.01    | 0.48  | 0.27  |  |
| GraphRNN | BFS       | 0.034           | 0.11  | 0.009 | 0.016          | 0.05  | 0.004 | 0.03    | 0.085 | 0.043 |  |
|          | uniform   | 0.096           | 0.091 | 0.021 | 0.009          | 0.09  | 0.003 | 0.042   | 0.104 | 0.074 |  |
|          | VI [ours] | 0.018           | 0.01  | 0.008 | 0.08           | 0.05  | 0.002 | 0.015   | 0.067 | 0.02  |  |
| GraphGEN | DFS       | 0.695           | 0.931 | 0.178 | 0.047          | 0.032 | 0.017 | 0.716   | 0.456 | 0.078 |  |
|          | VI [ours] | 0.143           | 0.248 | 0.068 | 0.032          | 0.078 | 0.008 | 0.346   | 0.440 | 0.020 |  |
|          |           | Lung            |       |       |                | Yeast |       |         | Cora  |       |  |
|          |           | Deg.            | Clus. | Orbit | Deg.           | Clus. | Orbit | Deg.    | Clus. | Orbit |  |
| DeepGMG  | uniform   | 0.206           | 0.023 | 0.224 | 0.547          | 0.242 | 0.470 | 0.35    | 0.27  | 0.11  |  |
|          | VI [ours] | 0.189           | 0.023 | 0.2   | 0.324          | 0.118 | 0.258 | 0.36    | 0.22  | 0.04  |  |
| GraphRNN | BFS       | 0.103           | 0.301 | 0.043 | 0.512          | 0.153 | 0.026 | 1.125   | 1.002 | 0.427 |  |
|          | uniform   | 1.213           | 0.002 | 0.081 | 0.746          | 0.351 | 0.070 | 0.188   | 0.206 | 0.200 |  |
|          | VI [ours] | 0.074           | 0.060 | 0.004 | 0.097          | 0.092 | 0.005 | 0.066   | 0.171 | 0.052 |  |
| GraphGEN | DFS       | 0.049           | 0.017 | 0.000 | 0.014          | 0.003 | 0.000 | 0.099   | 0.167 | 0.122 |  |
|          | VI [ours] | 0.022           | 0.008 | 0.000 | 0.012          | 0.003 | 0.000 | 0.056   | 0.103 | 0.069 |  |



## Summaries

Contributions

- 1. Analyzed autoregressive graph generative models
- 2. Provide an in-depth discussion of the automorphism issue that raises when calculating the marginal likelihood
- 3. Address the intractable marginalization over node orderings for fitting a graph generative model
- Limitation
  - 4. Computational speed



## xiaohui.chen@tufts.edu

Thank You