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Problem of Autoregressive Graph Genera6on

Two types of autoregressive models: 

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020] 
 
Consider noder orderings  and  and adjacency matrix  
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Problem of Autoregressive Graph Genera6on

Two types of autoregressive models: 

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020] 
 
Consider noder orderings  and  and adjacency matrix  
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Problem of Autoregressive Graph Genera6on

Two types of autoregressive models: 

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020] 
 
Consider noder orderings  and  and adjacency matrix  
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Problem of Autoregressive Graph Genera6on

L1:4

Two types of autoregressive models: 

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020] 
 
Consider noder orderings  and  and adjacency matrix  
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Problem of Autoregressive Graph Genera6on

π = (1,3,5,2,4)

π = (1,2,4,3,5)

Two types of autoregressive models: 

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020] 
 
Consider noder orderings  and  and adjacency matrix  
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Problem of Autoregressive Graph Genera6on

Two types of autoregressive models: 

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020] 

2. Based on graph sequence [Li et al., 2018] 
 
Consider node orderings , , ,  and graph sequence  
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Problem of Autoregressive Graph Genera6on

π = (1,3,5,2,4)

Two types of autoregressive models: 

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020] 

2. Based on graph sequence [Li et al., 2018] 
 
Consider node orderings , , ,  and graph sequence  
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Problem of Autoregressive Graph Genera6on

π = (1,3,5,2,4)

Two types of autoregressive models: 

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020] 

2. Based on graph sequence [Li et al., 2018] 
 
Consider node orderings , , ,  and graph sequence  
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Two types of autoregressive models: 

1. Based on adjacency matrix [You et al., 2018; Liao et al., 2019; Shi et al., 2020; Goyal et al., 2020] 

2. Based on graph sequence [Li et al., 2018] 
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Problem of Autoregressive Graph Genera6on

Observations: 

1.  A graph  does not naturally have a unique adjacency matrix  or sequence  

• For that, we need to choose a node ordering  

• A tuple  uniquely determines  , then we can fit the likelihood  

2. There are multiple -s leading to the same  due to the graph automorphism 

3. An autoregressive generative model (which generates )  does not specify a distribution over 

G A G

π

(G, π) A/G1:n p(A)/p(G1:n)

(G, π) A/G1:n

A/G1:n π
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Bridging Node Ordering  and π A/G1:n

• To fit a graph model via MLE, we need the marginal likelihood 

                                                              

• The marginalization space of  is very hard to characterize, while the space of  is very easy 

                                    

• Relation between  and  

P(G) = ∑
A∈𝒜(G)

P(A) p(G) = ∑
G1:n: Gn=G

p(G1:n)

A/G1:n π

P(G) = ∑
(G,π)

P(G, π)

P(A)/P(G1:n) P(G, π)

P(G, π) =
1

|Π[A] |
P(A); |Π[A] | = number of graph automorphism

=
1

|Π[G1:n] |
P(G1:n); |Π[G1:n] | =

n

∑
i=1

orbit count of target node i at Gi
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Bridging Node Ordering  and : Exampleπ A/G1:n
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1

|Π[A] |
P(A) =

1
2

P(A)

P(G, π) =
1

|Π[G1:n] |
P(G1:n) =

1
8

P(G1:n)

|Π[G1:n] | = 1 × 2 × 2 × 1 × 2 = 8

|Π[A] | = |Aut(G) | = 2
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Op6mizing the Node ordering

• Introduce a variational distribution  to approximate  

• Parameterizing  using GNN 

• sample node recurrently to generate node ordering  

• Maximize ELBO w.r.t generative model  and variational parameters  

                          

q(π |G) p(π |G)

qϕ(π |G)

π

θ ϕ

L(θ, ϕ, G)=Eqϕ(π|G)[log pθ(G, π)−log qϕ(π |G)]
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Op6mizing the Node ordering

xiaohui.chen@tufts.edu



Experiment: Predic6ve Log-Likelihood

Approximate log-likelihood and ELBO of different generative 
models. For each model, we compare the default training 
algorithm with our method based on VI. The table shows 

1) VI improves the model's predictive performance.    

2) The variational bound is relatively tight.

Tightness of the approximated log-likelihood
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Experiment: Qualita6ve Analysis
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Experiment: Qualita6ve Analysis
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Experiment: Quality of Generated Graphs
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Summaries

Contributions 

1. Analyzed autoregressive graph generative models 

2. Provide an in-depth discussion of the automorphism issue that raises when calculating the marginal likelihood 

3. Address the intractable marginalization over node orderings for fitting a graph generative model 

Limitation 

4. Computational speed
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