Cooperative Exploration for Multi-Agent Deep Reinforcement Learning

Iou-Jen Liu, Unnat Jain, Raymond A. Yeh, Alexander G. Schwing University of Illinois at Urbana-Champaign ICML 2021

Liu et al.

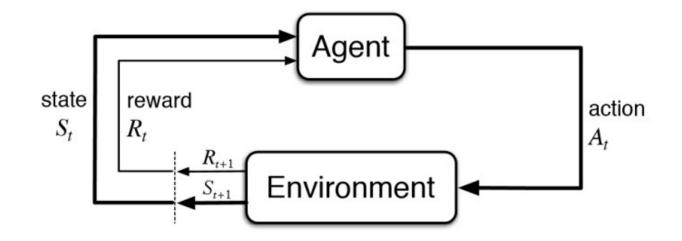
Introduction

Multi-agent systems are everywhere

Introduction

Goal of RL:

• Learn a policy that will maximize the expected reward



Needs access to a reward function

Sparse Reward

Reward is provided only when a task is completed

- Only define the criteria for completing a task
- Difficult policy optimization
- Requires efficient exploration strategy

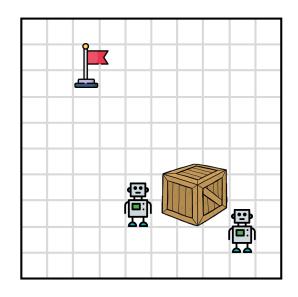
Challenge 1: Identify states that are worth exploring

- States grow exponentially with the number of agents
- Infeasible to explore all states

Challenge 1: Identify states that are worth exploring

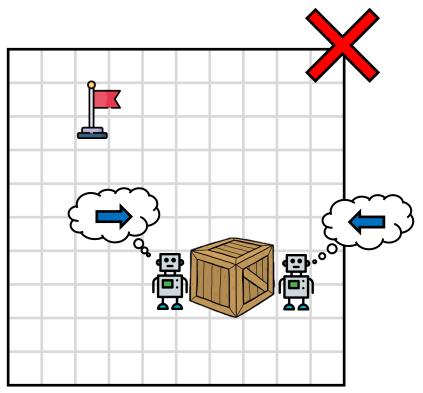
- States grow exponentially with the number of agents
- Infeasible to explore all states

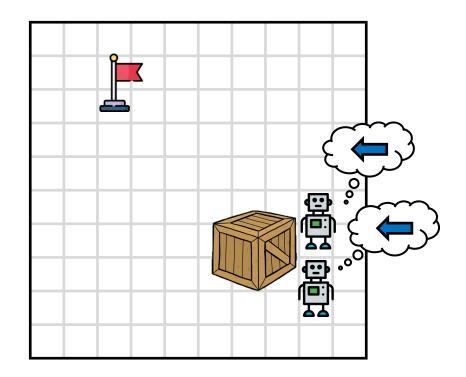
- Agents (\mathbb{A}) push a heavy box (\mathbb{A}) to a goal (\mathbb{A}) in an $L \times L$ grid
- Only receive reward when the box is pushed to the goal
- State contains x, y location of the agents and the box
- Two agents: $(L^2)^{1+2}$ states to explore
- N agents: $(L^2)^{1+N}$ states to explore



Challenge 2: Coordinate agents' exploration efforts

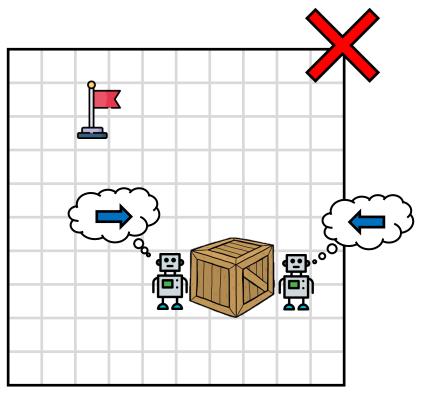
Uncoordinated exploration is inefficient

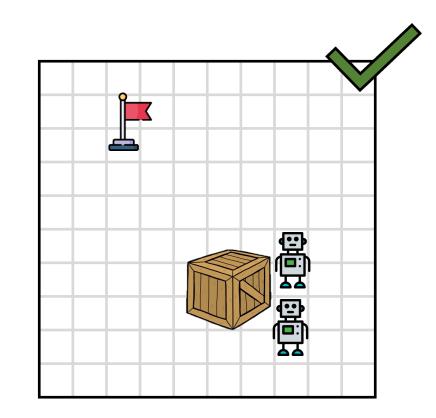




Challenge 2: Coordinate agents' exploration efforts

• Uncoordinated exploration is inefficient





Challenge 1: Identify states that are worth exploring CMAE: Restricted space exploration

- Identify under-explored low-dimensional restricted space
- Avoid exploring the exponentially-growing full state space

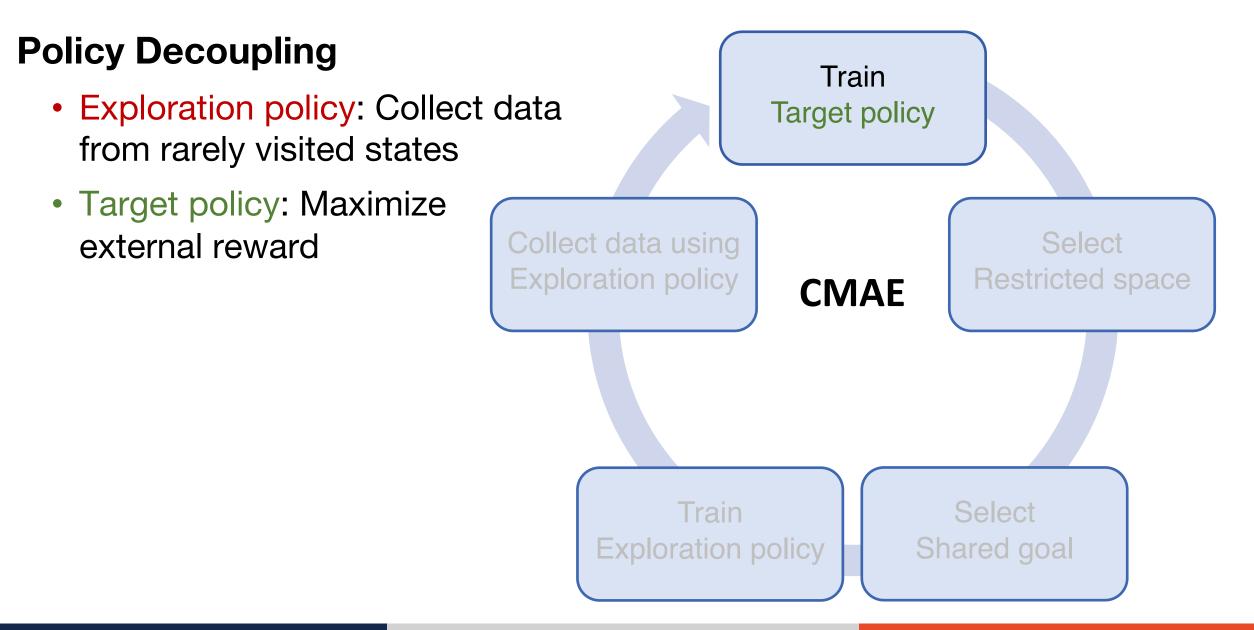
Challenge 2: Coordinate agents' exploration efforts

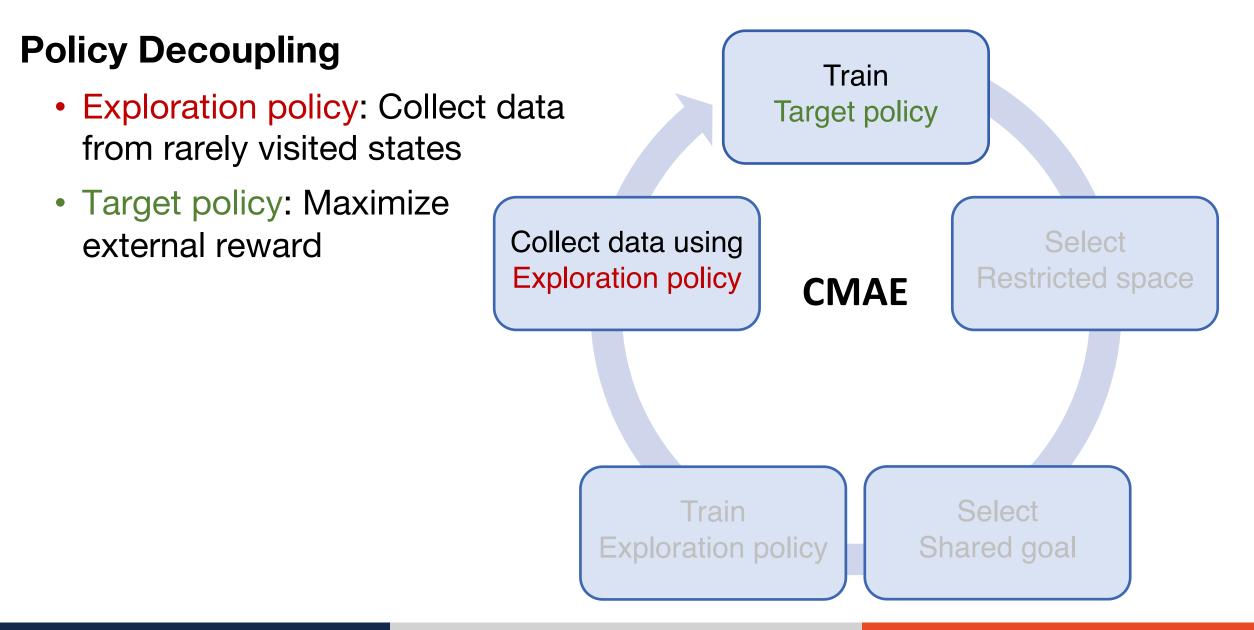
CMAE: Shared goal exploration

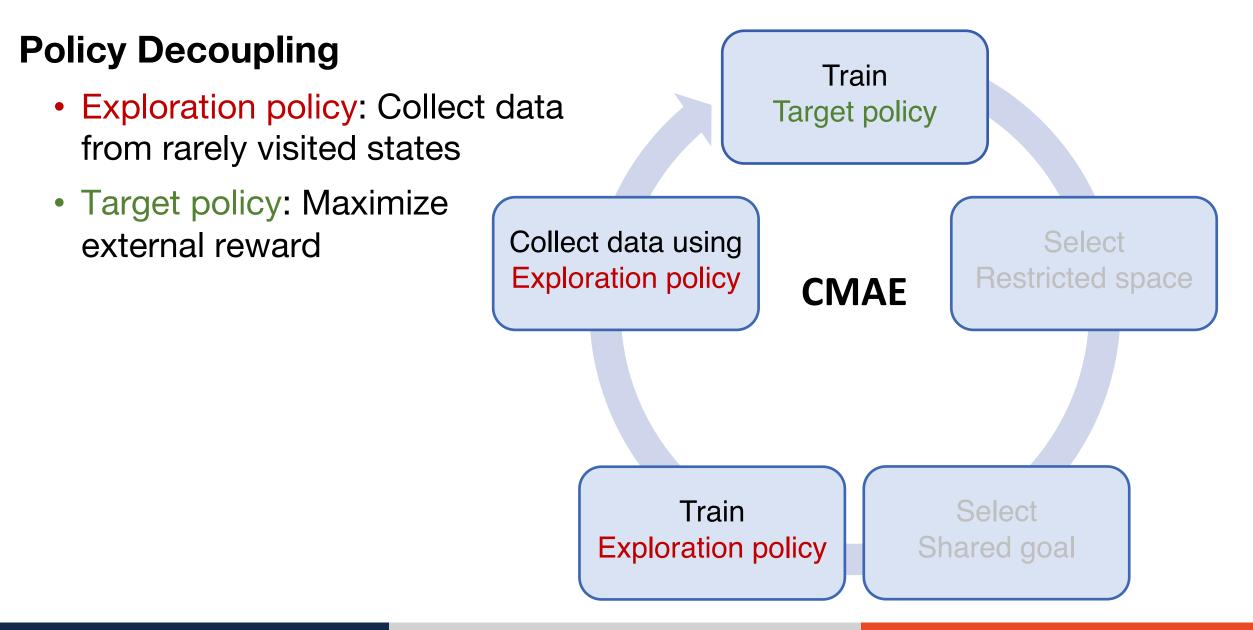
- Agents share a common goal while exploring
- Enable coordinated multi-agent exploration

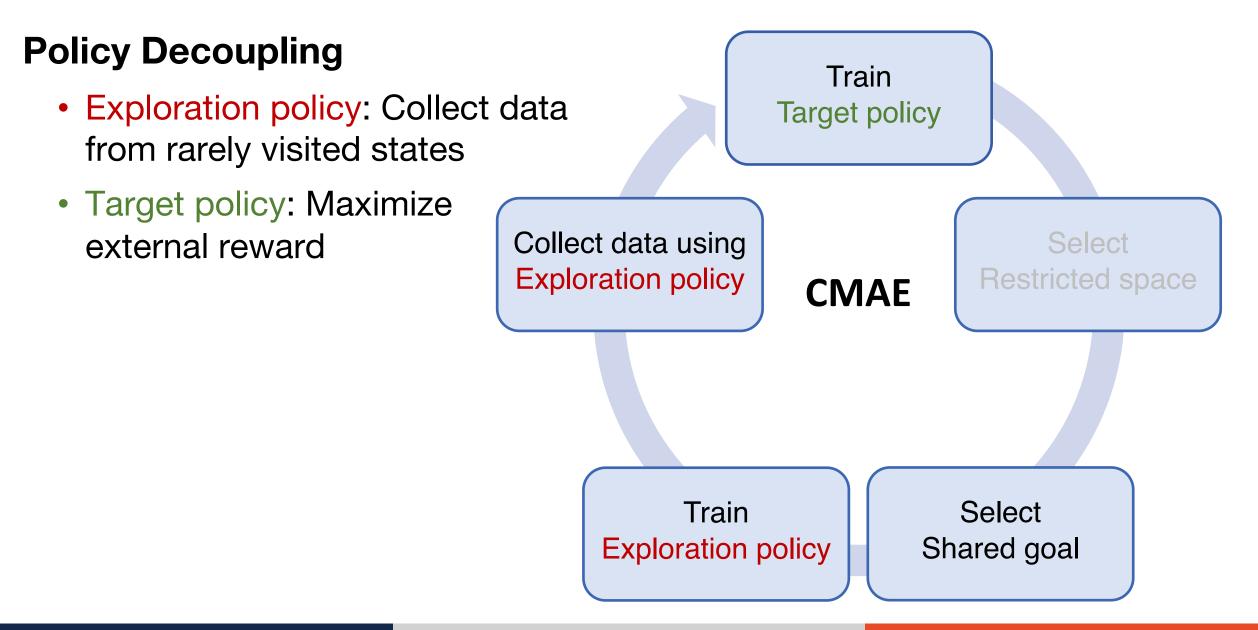
Policy Decoupling

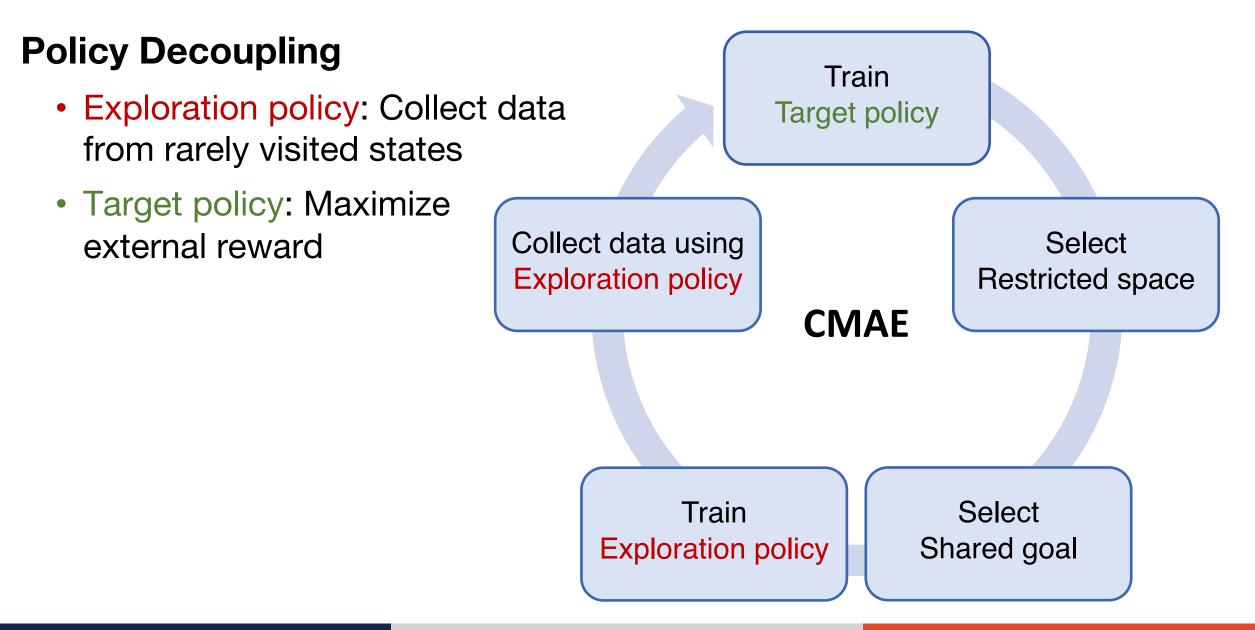
- Exploration policy: Collect data from rarely visited states
- Target policy: Maximize
 external reward







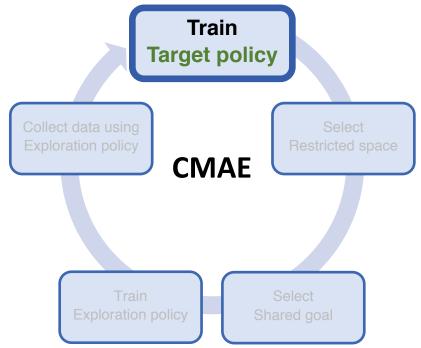




Train Target Policy and Data Collection

Maximize the external environment reward

- Use off-policy algorithms (e.g., MADDPG, QMIX)
- Use previously collected data



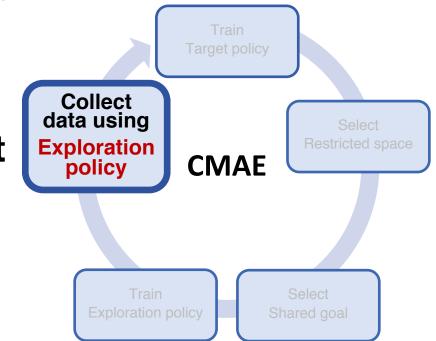
Train Target Policy and Data Collection

Maximize the external environment reward

- Use off-policy algorithms (e.g., MADDPG, QMIX)
- Use previously collected data

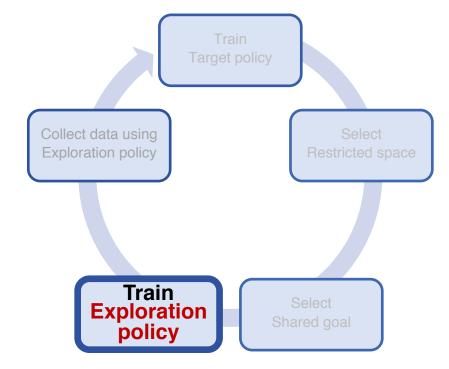
Exploration policy interacts with environment

- Collected data is used to train the target policy
- The data contains under-explored states



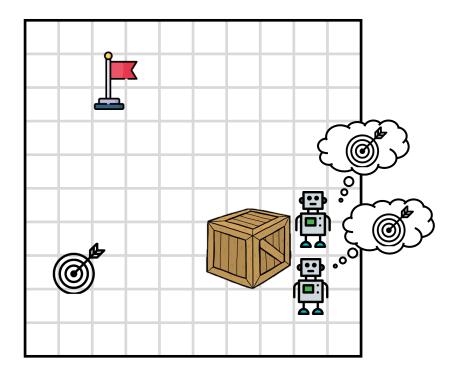
Exploration policy is trained to reach a selected goal

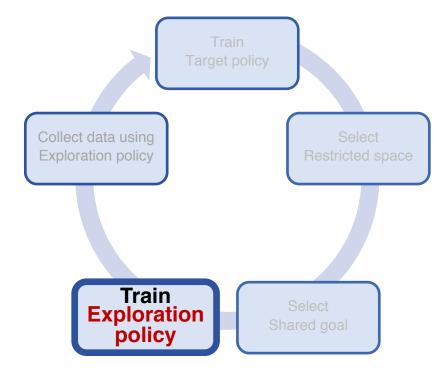
- Reshape reward in the replay buffer
- Positive reward when reaching a shared goal



Exploration policy is trained to reach a selected goal ())

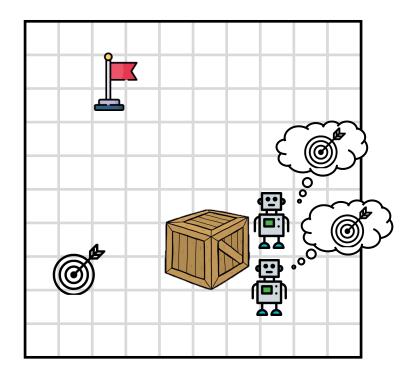
- Reshape reward in the replay buffer
- · Positive reward when reaching a shared goal

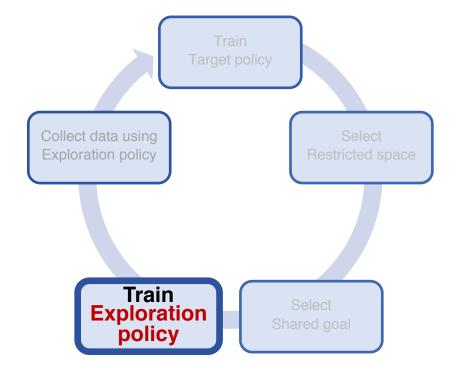




Exploration policy is trained to reach a selected goal ())

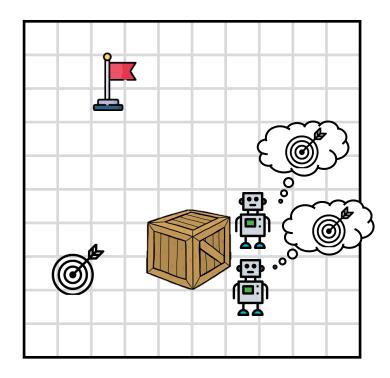
- Reshape reward in the replay buffer
- · Positive reward when reaching a shared goal

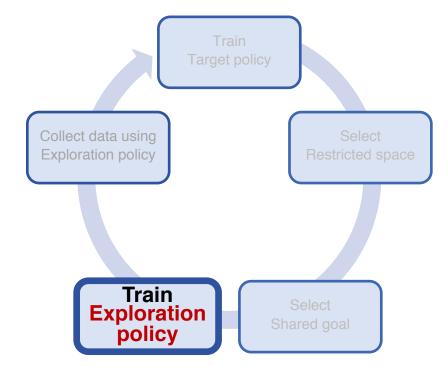




Exploration policy is trained to reach a selected goal ())

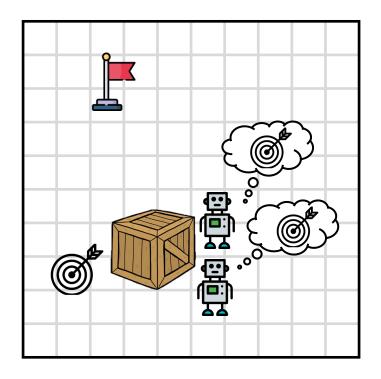
- Reshape reward in the replay buffer
- · Positive reward when reaching a shared goal

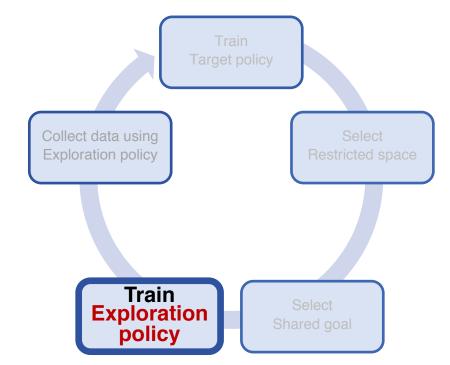




Exploration policy is trained to reach a selected goal ())

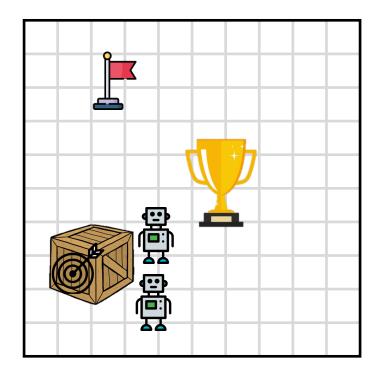
- Reshape reward in the replay buffer
- · Positive reward when reaching a shared goal

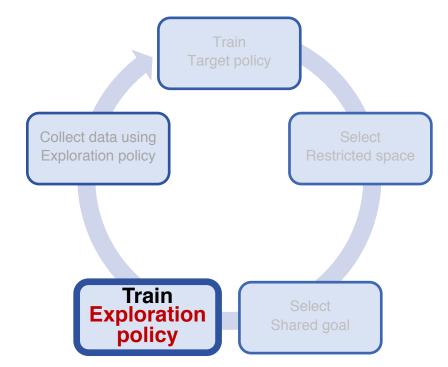




Exploration policy is trained to reach a selected goal ())

- Reshape reward in the replay buffer
- · Positive reward when reaching a shared goal

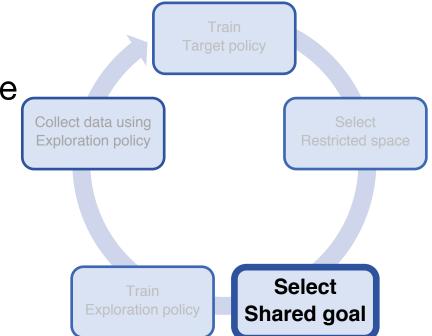




Select Shared Goal

How to select a shared goal?

- Select a rarely visited state as shared goal
- Count in low-dimensional restricted space
- Avoid selecting goal from full state space, whose size grows exponentially



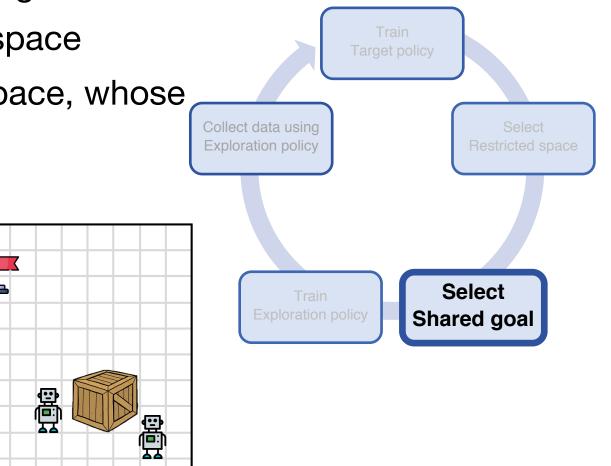
Select Shared Goal

How to select a shared goal?

- Select a rarely visited state as shared goal
- Count in low-dimensional restricted space
- Avoid selecting goal from full state space, whose size grows exponentially

Example: 2-agent push-box

- $S_{\{box_x, box_y\}}$ contains box x, y
- Shared goal is a state with box in a rarely seen location



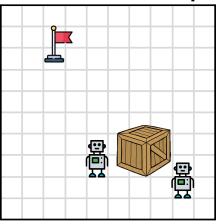
Restricted Space

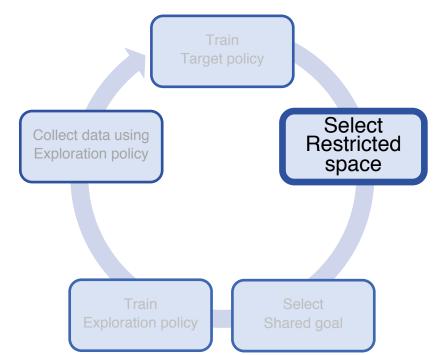
 Reward function typically depends on a lowdimensional subspace of the state space

Example: N-agent push-box task in $L \times L$ grid

- Size of state space: $(L^2)^{1+N}$
- Reward function depends only on the box

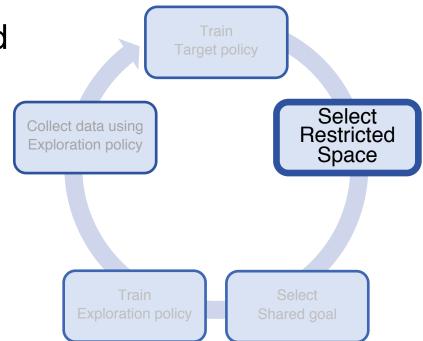
location, whose state space size is L^2





How to find an under-explored restricted space?

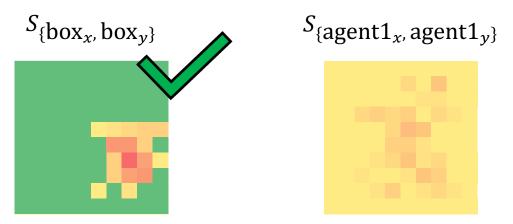
- Each restricted space S_k has a counter c_k
- c_k tracks the number of times a state was visited
- Use c_k to compute distribution of state visitation
- Under-explored restricted space has smaller entropy

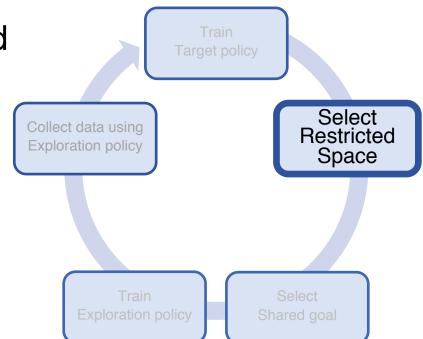


How to find an under-explored restricted space?

- Each restricted space S_k has a counter c_k
- c_k tracks the number of times a state was visited
- Use c_k to compute distribution of state visitation
- Under-explored restricted space has smaller entropy

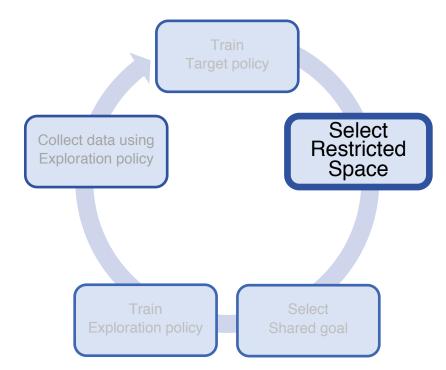
Example: 2-agent push-box





Space Tree

- Each node represents a restricted space
- Space tree is initialized with 1-dimensional restricted spaces



Space Tree

- Each node represents a restricted space
- Space tree is initialized with 1-dimensional restricted spaces

Space Tree Expansion

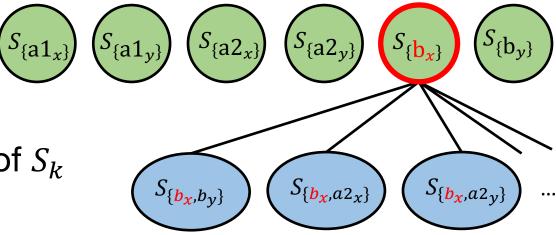
- Utility μ_k : negative normalized entropy of S_k
- Select restricted space S_k with high μ_k
- Add all restricted spaces of (|k| + 1)-dimension which contain S_k as a subset

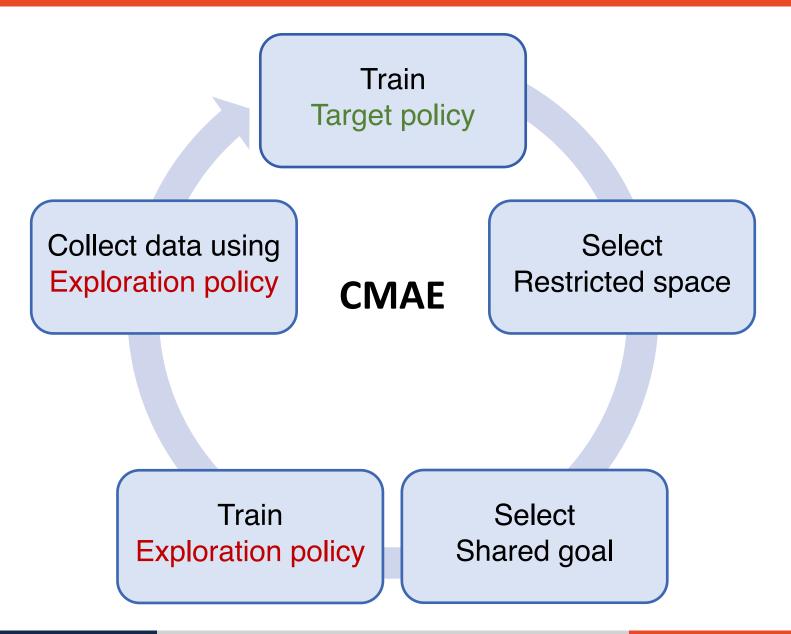
Space Tree

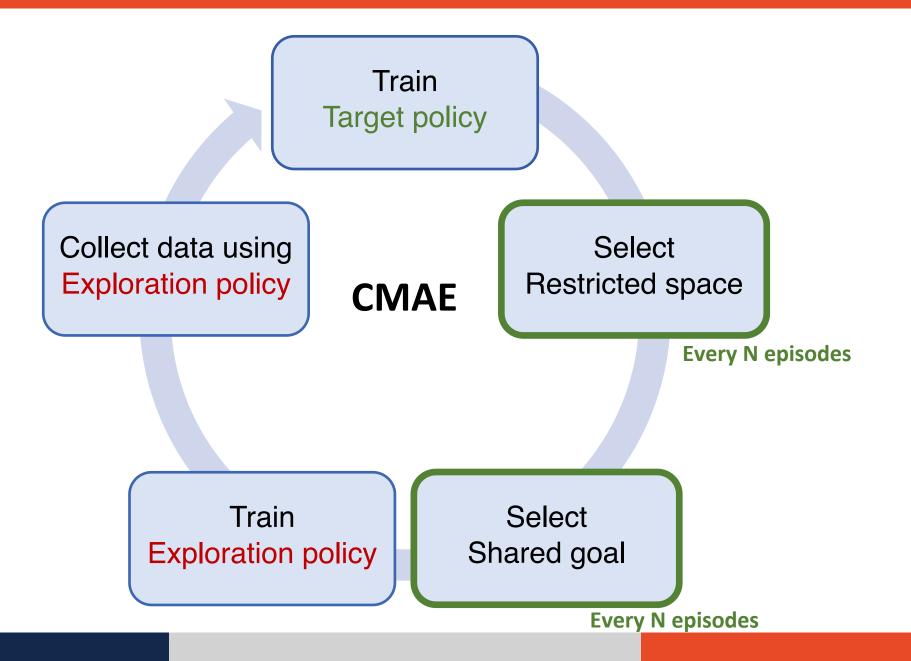
- Each node represents a restricted space
- Space tree is initialized with 1-dimensional restricted spaces

Space Tree Expansion

- Utility μ_k : negative normalized entropy of S_k
- Select restricted space S_k with high μ_k
- Add all restricted spaces of (|k| + 1)-dimension which contain S_k as a subset







Liu et al.

Experimental Results

Multi-agent grid world tasks

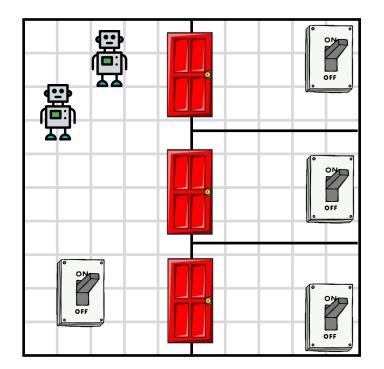
- Push-Box
- Pass
- Secret-Room

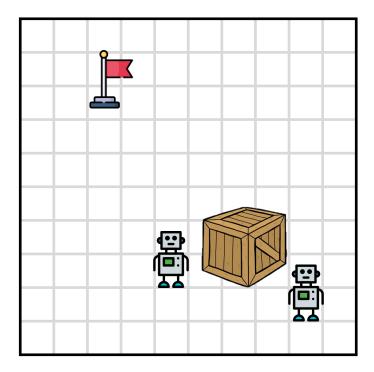
Sparse-reward StarCraft II multi-agent challenge (SMAC)

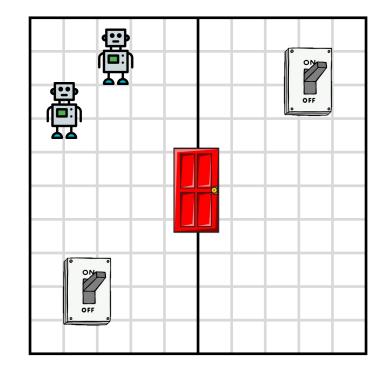
- 3m
- 2m vs. 1z
- 3m vs. 5z

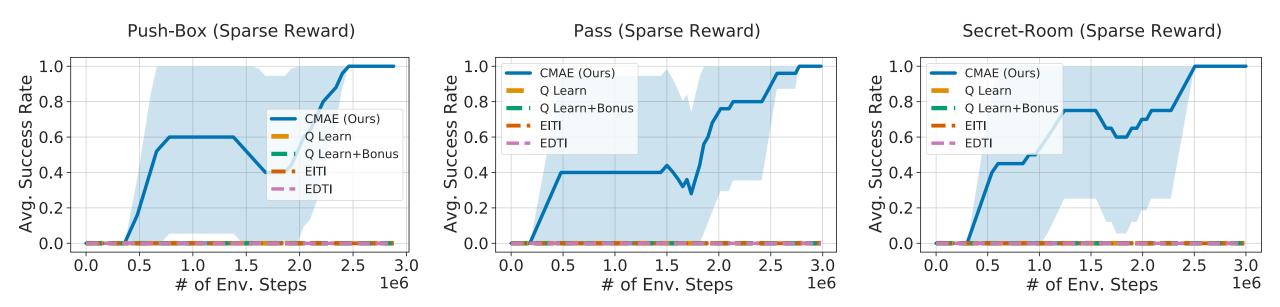
Push-Box

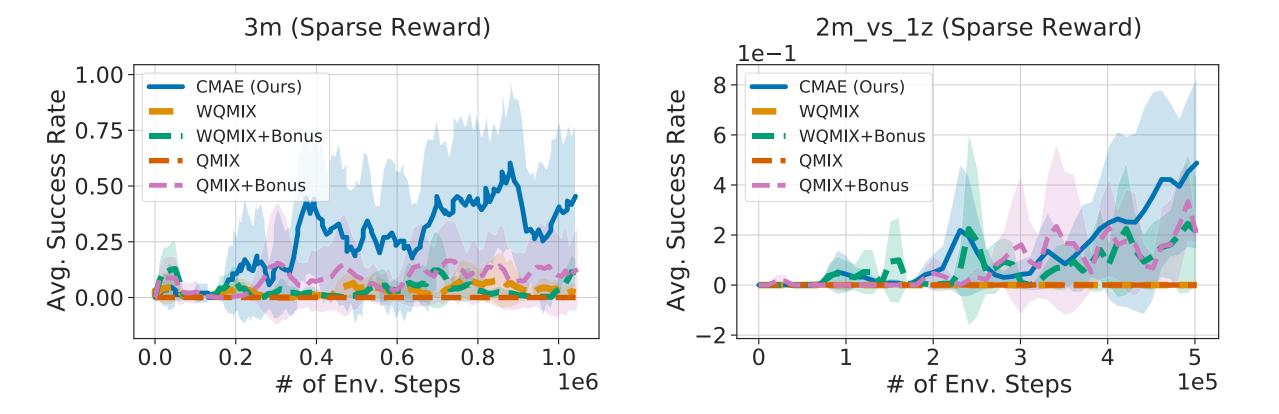
Secret-Room







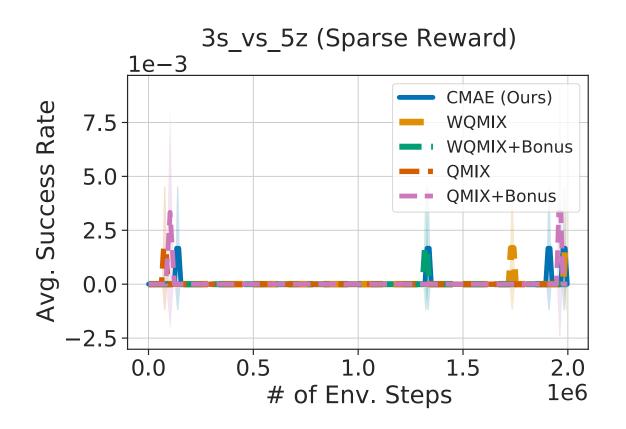




Limitations

Sparse 3s_vs_5z

- Winning strategy: force the enemies to scatter around the environment and attend to them one by one
- Extremely difficult without handcrafted dense reward



Takeaways

Cooperative Multi-Agent Exploration (CMAE)

- Learns coordinated exploration policies via shared goals
- First explores low-dimensional restricted spaces
- Outperforms baselines on sparse-reward tasks

Please see us at the poster session for more details!

https://ioujenliu.github.io/CMAE