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Introduction




Introduction

Goal of RL:
* Learn a policy that will maximize the expected reward
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Needs access to a reward function




Sparse Reward

Reward is provided only when a task is completed
* Only define the criteria for completing a task
« Difficult policy optimization
* Requires efficient exploration strategy




Challenges of Multi-Agent Exploration with Sparse Reward

Challenge 1: Identify states that are worth exploring

« States grow exponentially with the number of agents
* Infeasible to explore all states
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Example: push-box task

. Agents () push a heavy box ( |l
* Only receive reward when the box is pushed to the goal
« State contains x, y location of the agents and the box

« Two agents: (L?)*** states to explore

- N agents: (L?)'*" states to explore
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Challenges of Multi-Agent Exploration with Sparse Reward

Challenge 2: Coordinate agents’ exploration efforts

« Uncoordinated exploration is inefficient
Example: push-box task
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Cooperative Multi-Agent Exploration (CMAE)

Challenge 1: Identify states that are worth exploring

CMAE: Restricted space exploration
* ldentify under-explored low-dimensional restricted space
* Avoid exploring the exponentially-growing full state space

Challenge 2: Coordinate agents’ exploration efforts

CMAE: Shared goal exploration
* Agents share a common goal while exploring
* Enable coordinated multi-agent exploration




Cooperative Multi-Agent Exploration (CMAE)

Policy Decoupling

« Exploration policy: Collect data
from rarely visited states

 Target policy: Maximize
external reward
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Train Target Policy and Data Collection

Maximize the external environment reward
« Use off-policy algorithms (e.g., MADDPG, QMIX)

. . Train
Use previously collected data
] e




Train Target Policy and Data Collection

Maximize the external environment reward
» Use off-policy algorithms (e.g., MADDPG, QMIX)
« Use previously collected data [ J

Collect
data using

Exploration policy interacts with environment | Exploration | - [ ]

* Collected data is used to train the target policy
* The data contains under-explored states




Train Exploration Policy

Exploration policy is trained to reach a selected goal
» Reshape reward in the replay buffer

» Positive reward when reaching a shared goal [ J
[Collect data usingJ [ }
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Train [ J
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Select Shared Goal

How to select a shared goal?
» Select a rarely visited state as shared goal

* Count in low-dimensional restricted space [

* Avoid selecting goal from full state space, whose
size grows exponentially [E;’Ll?oi;iif:;ii}
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Select Shared Goal

How to select a shared goal?
» Select a rarely visited state as shared goal

* Count in low-dimensional restricted space [

* Avoid selecting goal from full state space, whose
size grows exponentially [Eiﬂ?oi;?ii?;;?;ﬂ

|

Example: 2-agent push-box

¢S (box,, box,} contains box x, y l‘ [ J

Shared goal

« Shared goal is a state with
box in a rarely seen location




Select Restricted Space

Restricted Space

« Reward function typically depends on a low-
dimensional subspace of the state space [ J

Example: N-agent push-box task in L X L grid
" Collect data using Sel.eCt
° Slze Of State SpaCe: (L2)1+N [Exploration poIich Restricted

space

* Reward function depends only on the box
location, whose state space size is L*

E =S




Select Restricted Space

How to find an under-explored restricted space?
« Each restricted space S; has a counter ¢,
* ¢, tracks the number of times a state was visited
« Use ¢, to compute distribution of state visitation

Collect data using

* Under-explored restricted space has smaller Exploration policy

entropy
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Select Restricted Space

How to find an under-explored restricted space?
« Each restricted space S; has a counter ¢,
* ¢, tracks the number of times a state was visited
« Use ¢, to compute distribution of state visitation

Collect data using

* Under-explored restricted space has smaller Exploration policy

entropy
Example: 2-agent push-box
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Select Restricted Space

Space Tree
« Each node represents a restricted space
. Space tree is initialized with 1-dimensional [ J
restricted spaces
&S it




Select Restricted Space

Space Tree
* Each node represents a restricted space

« Space tree is initialized with 1-dimensional
restricted spaces

Space Tree Expansion
 Utility u,: negative normalized entropy of S;,
» Select restricted space S, with high p

« Add all restricted spaces of (|k| + 1)-dimension
which contain S;, as a subset
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Space Tree
« Each node represents a restricted space
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Space Tree Expansion

» Select restricted space S, with high p
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which contain S;, as a subset
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Experimental Results

Multi-agent grid world tasks
* Push-Box
* Pass
« Secret-Room
Sparse-reward StarCraft Il multi-agent challenge (SMAC)
 3M
e 2myvs. 1z

e 3Mvs. 5z




Multi-Agent Grid World Tasks

Push-Box Pass Secret-Room




Push-Box (Sparse Reward)
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Secret-Room (Sparse Reward)
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SMAC Results
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Limitations

Sparse 3s_vs_5z

» Winning strategy: force the
enemies to scatter around the
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Cooperative Multi-Agent Exploration (CMAE)
* Learns coordinated exploration policies via shared goals
 First explores low-dimensional restricted spaces
* Outperforms baselines on sparse-reward tasks

Please see us at the poster session for more details!
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https://ioujenliu.github.io/CMAE
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