Large-Scale Meta-Learning
with Continual Trajectory Shifting

JaeWoong Shin*, Hae Beom Lee*, Boging Gong, Sung Ju Hwang

(*: Equal contribution)

ICML 2021

Beyond Few-shot Learning

* Meta-learning is effective for solving few-shot learning.

« What if many-shot? We already know that knowledge transfer is
effective for many-shot dataset as well (e.g. ImageNet finetuning).

ol Food-101
9 B CIFAR-10
T m CIFAR-100
95 B Birdsnap
D B SUN397
é 90 B Stanford Cars
© W FGVC Aircraft
e 85 "
w gok B vVOC2007
DTD
70¢
B Oxford-IlIT Pets
60 B Caltech-101
50

B 102 Flowers

50 60 707580 85 90 95
Trained from Random Init

Kornblith et al., Do Better ImageNet Models Transfer Better?, CVPR 2019

Large-Scale Meta-Learning

Large-scale meta-learning: many-shot and heterogeneous task distribution.

- Requires long horizon for inner-optimizations.

¢
\‘7(.)?0
(:b 3 (p 3 o \
- ~ Sv
™M ™ .
oy Ny '
v & v & t
Task 1 Task 1
Taslk
Few-shot Many-shot Many-shot
Homogeneous Heterogeneous

Large-Scale Meta-Learning

High computational cost of backpropagating through long inner process.

Backpropagation through learning process —
Reverse Mode Differentiation (RMD)

Franceschi et al., Forward and Reverse Gradient-Based Hyperparameter Optimization, ICML 2017

First-order Approximations

First-order approximation can be used to reduce the computational cost.

MAML FOMAML Reptile

Too Slow Meta-update

However, even Reptile is inefficient for long-horizon case.
- ex) 1000 inner-gradient steps per each meta-update.

—

Task1\

Too Slow Meta-update

However, even Reptile is inefficient for long-horizon case.
- ex) 1000 inner-gradient steps per each meta-update.

1000
-—

t‘ &

Too Slow Meta-update

However, even Reptile is inefficient for long-horizon case.
- ex) 1000 inner-gradient steps per each meta-update.

Too Slow Meta-update

However, even Reptile is inefficient for long-horizon case.
- ex) 1000 inner-gradient steps per each meta-update.

1000 }
‘\7’“0 _e~
/ s
rs

Too Slow Meta-update

However, even Reptile is inefficient for long-horizon case.
- ex) 1000 inner-gradient steps per each meta-update.

ldea — Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update?

ldea — Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update?

ldea — Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update?

ldea — Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update?

., required shift
o |

ldea — Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update?

ldea — Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update?

ldea — Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update?

ldea — Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update?

ldea — Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update?

ldea — Continual Trajectory Shifting

If we perform trajectory shifting for every meta-update...
- 1000 times more frequent meta-update !!

How to Estimate?

Us(¢)
1. First-order Taylor Approximation (U, (¢) : Update k steps from ¢) o

Us(¢p + A)
AU, ($) ’

0p

U(¢p +4) = U(¢) +

2. Hessian Approximation

(@) U(9) U@ T
06 aUnn(d) 3UL(P) 00 =| [o-an

Therefore,

Up(¢p + 8) = Up(p) + A

Approximation Error

The approximation errors compound as we keep shifting. Us(¢)

o
Us(¢p +4)

1shift> Uy(p+A) = U () + A+ 0(Bah + B?)

Kshift > Ug(¢p+ A1+ 4 Ag_q)
= Uy (- Uy (Uy (@) + A1) -+ + Ap—1) + O(Bahk?* + B2k)

B=10"2 k=100, ReLU a =103, k=100, ReLU a=10"3, =102
0 -2.0
-2.2
-1
~ 24 ~
W w26 w
> D 2 o Then, why should it work?
-3 ~3.0 a0 1
4 -3.2 _45 Ufl= ReLU
' — Softplus
e 5.0
AT AT RS AT AT A S AS AY AS AS RS A" 2 4070 ¢0 R A°

a B k

Gradually Increasing k

The horizon size k gradually increases. What does it mean?

Task1\

Gradually Increasing k

The horizon size k gradually increases. What does it mean?

Task1\

Gradually Increasing k

The horizon size k gradually increases. What does it mean?

Task1\

Meta-Level Curriculum Learning

Meta loss surface is smoother for smaller k - regularization effect !

S S
“‘1‘ — q s, — : Inner-step

z < z “ /e » : Meta-step

—— : Meta-learning

J : Meta-loss surface

------- : Trajectory shifting
Taskl\ Tasm

Small k Large k

Synthetic
Experiment

10|

— Ours

_55

0 5

10

—— Reptile
QOurs Accurate

Experiments — Image Classification

We experiment with large-scale (many-shot and heterogeneous)
datasets.

Meta-train with seven datasets:

Tiny ImageNet, CIFAR-100, Stanford Dogs, Aircraft, CUB, Fashion-MNIST, and
SVHN.

Meta-test with five datasets:
Stanford Cars, QuickDraw, VGG-Flowers, VGG-Pets, and STL10.

Baselines

We compare with the following first-order meta-learning algorithms. Our method
(Continual Trajectory Shifting) has been applied to Repitile.

FOMAMLI1! IMAMLI2! FOMAML++0 LeapH! Reptilel

[1] Finn et al. 17 Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.
[2] Rajeswaran, et al. 19, Meta-learning with implicit gradients.

[3] Antoniou et al. 19, How to train your MAML.

[4] Flennerhag et al. 18, Transferring Knowledge across Learning Processes.

[5] Nichol et al. 18, On First-Order Meta-Learning Algorithms.

Image Classification Results

Our method outperforms meta-learning baselines, in terms of meta-convergen
ce and test accuracy.

Meta-convergence Meta-test time test accuracy
3 54
“' ®ssvara = 78
D R R PP S A ORI S 59 70 ’———
. FOMAML ’ pedd 76
(o IS | A N I : AE”
02 iIMAML 50 [A1 4 65 ' 4 74
oD FOMAML++ / / /| &
R LR Leap B/ 60 o Ehés
m 4 0. ’Q’ ‘.0‘
= " Reptile 16 ’ 70
e . Qurs] Ol S L I B St 68 "itespaspsfeerme, |
- 44

o=
——~_~___

5K 10K 20K 50K 100K200K 5K 10K 20K 50K 100K200K 5K 10K 20K 50K 100K 200K
0 50K 100K 150K 200K Cumulative inner steps Cumulative inner steps Cumulative inner steps

Cumulative inner steps Quickdraw VGG Pets STL10

72
70 =

= Qurs
68 :

=== Reptile

66 Leap
-, | I

10 100 1000

K for meta-training
VGG Pets

Large K is better for many-shot

Longer inner trajectory shows better performance for many-shot learning.

79
78
s
— Ours
L= Reptile
s T Leap
74
10 100 1000
K for meta-training
STL10

= N w ESY (S, (o)) ~

Acc. improve. over Finetuning
(@)

Improving on ImageNet Pretraining

Our method outperforms ImageNet finetuning under limited data regime.

= Qurs
- =+ Reptile
- MTL

500 1000 2000 5000
Training instances

CIFAR100

500 1000 2000 5000
Training instances

SVHN

1.0

0.5

0.0

o —

500 1000 2000 5000
Training instances

VGG Pets

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4

\\’\
\
\

* —n —

500 1000 2000 5000
Training instances

Food

2.0

1.5

1.0

0.5

0.0
» \
\. /"

~0.5 N
500 1000 2000 5000
Training instances

CUB

Takeaways

« |f the task distribution is many-shot and heterogeneous, we need to
increase the length of inner-optimization trajectory.

* In solving the problem, first-order approximations are still inefficient in
terms of meta-update frequency.

« We can greatly increase the meta-update frequency by continuously shift
the inner-learning trajectories w.r.t each meta-update.

