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Beyond Few-shot Learning
• Meta-learning is effective for solving few-shot learning.
• What if many-shot? We already know that knowledge transfer is 

effective for many-shot dataset as well (e.g. ImageNet finetuning).

Kornblith et al., Do Better ImageNet Models Transfer Better?, CVPR 2019



Large-Scale Meta-Learning
Large-scale meta-learning: many-shot and heterogeneous task distribution.
à Requires long horizon for inner-optimizations.
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Large-Scale Meta-Learning

High computational cost of backpropagating through long inner process.

𝜙 …
Backprop.

Backpropagation through learning process –
Reverse Mode Differentiation (RMD)

Franceschi et al., Forward and Reverse Gradient-Based Hyperparameter Optimization, ICML 2017



First-order Approximations

First-order approximation can be used to reduce the computational cost.

Reptile

𝜙 𝜙

FOMAML

𝜙

MAML



Too Slow Meta-update

However, even Reptile is inefficient for long-horizon case.
à ex) 1000 inner-gradient steps per each meta-update.
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Idea – Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update? 
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Idea – Continual Trajectory Shifting

If we perform trajectory shifting for every meta-update…
à 1000 times more frequent meta-update !!
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How to Estimate?

1. First-order Taylor Approximation (𝑈! 𝜙 : Update 𝑘 steps from 𝜙)

𝑈! 𝜙 + Δ ≈ 𝑈! 𝜙 +
𝜕𝑈! 𝜙
𝜕𝜙

Δ

2. Hessian Approximation
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Therefore, 

𝑈! 𝜙 + Δ ≈ 𝑈! 𝜙 + Δ

𝜙
Δ

𝑈! 𝜙 + Δ
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Approximation Error
The approximation errors compound as we keep shifting.

𝑈# 𝜙 + Δ = 𝑈# 𝜙 + Δ + 𝑂(𝛽𝛼ℎ + 𝛽$)

𝜙
Δ

𝑈! 𝜙 + Δ

𝑈! 𝜙

𝑈! 𝜙 + Δ# +⋯+ Δ!"#
= 𝑈# ⋯𝑈# 𝑈# 𝜙 + Δ# ⋯+ Δ!"# + 𝑂(𝛽𝛼ℎ𝒌𝟐 + 𝛽$𝒌)

1 shift à

K shift à

Then, why should it work?



Gradually Increasing k
The horizon size 𝑘 gradually increases. What does it mean?
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Meta-Level Curriculum Learning
Meta loss surface is smoother for smaller k à regularization effect  !

Small k Large k



Synthetic 
Experiment

k=5 k=100



We experiment with large-scale (many-shot and heterogeneous) 
datasets.

Meta-train with seven datasets:
Tiny ImageNet, CIFAR-100, Stanford Dogs, Aircraft, CUB, Fashion-MNIST, and 
SVHN.

Meta-test with five datasets: 
Stanford Cars, QuickDraw, VGG-Flowers, VGG-Pets, and STL10.

Experiments – Image Classification



We compare with the following first-order meta-learning algorithms. Our method 
(Continual Trajectory Shifting) has been applied to Reptile.

Reptile[5]

𝜙𝜙 𝜙 𝜙 𝜙

FOMAML[1] iMAML[2] FOMAML++[3] Leap[4]

[1] Finn et al. 17 Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.
[2] Rajeswaran, et al. 19, Meta-learning with implicit gradients.
[3] Antoniou et al. 19, How to train your MAML.
[4] Flennerhag et al. 18, Transferring Knowledge across Learning Processes.
[5] Nichol et al. 18, On First-Order Meta-Learning Algorithms.

Baselines



Our method outperforms meta-learning baselines, in terms of meta-convergen
ce and test accuracy.

Quickdraw VGG Pets STL10

Image Classification Results

Meta-convergence Meta-test time test accuracy



VGG Pets STL10

Large K is better for many-shot

Longer inner trajectory shows better performance for many-shot learning.



Our method outperforms ImageNet finetuning under limited data regime.

CIFAR100 SVHN VGG Pets Food CUB

Improving on ImageNet Pretraining



• If the task distribution is many-shot and heterogeneous, we need to 
increase the length of inner-optimization trajectory.

• In solving the problem, first-order approximations are still inefficient in 
terms of meta-update frequency.

• We can greatly increase the meta-update frequency by continuously shift 
the inner-learning trajectories w.r.t each meta-update.

Takeaways


