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Beyond Few-shot Learning

* Meta-learning is effective for solving few-shot learning.

« What if many-shot? We already know that knowledge transfer is
effective for many-shot dataset as well (e.g. ImageNet finetuning).
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Large-Scale Meta-Learning

Large-scale meta-learning: many-shot and heterogeneous task distribution.

- Requires long horizon for inner-optimizations.
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Large-Scale Meta-Learning

High computational cost of backpropagating through long inner process.

Backpropagation through learning process —
Reverse Mode Differentiation (RMD)

Franceschi et al., Forward and Reverse Gradient-Based Hyperparameter Optimization, ICML 2017



First-order Approximations

First-order approximation can be used to reduce the computational cost.
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Too Slow Meta-update

However, even Reptile is inefficient for long-horizon case.
- ex) 1000 inner-gradient steps per each meta-update.
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ldea — Continual Trajectory Shifting

What if we can continuously estimate the required shift of inner-trajectory
w.r.t. each meta update?
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ldea — Continual Trajectory Shifting

If we perform trajectory shifting for every meta-update...
- 1000 times more frequent meta-update !!




How to Estimate?
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Approximation Error

The approximation errors compound as we keep shifting. Us(¢)
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Gradually Increasing k

The horizon size k gradually increases. What does it mean?

Task1\



Gradually Increasing k

The horizon size k gradually increases. What does it mean?

Task1\



Gradually Increasing k

The horizon size k gradually increases. What does it mean?

Task1\



Meta-Level Curriculum Learning

Meta loss surface is smoother for smaller k - regularization effect !
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Experiments — Image Classification

We experiment with large-scale (many-shot and heterogeneous)
datasets.

Meta-train with seven datasets:

Tiny ImageNet, CIFAR-100, Stanford Dogs, Aircraft, CUB, Fashion-MNIST, and
SVHN.

Meta-test with five datasets:
Stanford Cars, QuickDraw, VGG-Flowers, VGG-Pets, and STL10.



Baselines

We compare with the following first-order meta-learning algorithms. Our method
(Continual Trajectory Shifting) has been applied to Repitile.

FOMAMLI1! IMAMLI2! FOMAML++0 LeapH! Reptilel

[1] Finn et al. 17 Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.
[2] Rajeswaran, et al. 19, Meta-learning with implicit gradients.

[3] Antoniou et al. 19, How to train your MAML.

[4] Flennerhag et al. 18, Transferring Knowledge across Learning Processes.

[5] Nichol et al. 18, On First-Order Meta-Learning Algorithms.



Image Classification Results

Our method outperforms meta-learning baselines, in terms of meta-convergen
ce and test accuracy.
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Large K is better for many-shot

Longer inner trajectory shows better performance for many-shot learning.
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Improving on ImageNet Pretraining

Our method outperforms ImageNet finetuning under limited data regime.
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Takeaways

« |f the task distribution is many-shot and heterogeneous, we need to
increase the length of inner-optimization trajectory.

* In solving the problem, first-order approximations are still inefficient in
terms of meta-update frequency.

« We can greatly increase the meta-update frequency by continuously shift
the inner-learning trajectories w.r.t each meta-update.



