Tightening the Dependence on Horizon in the Sample Complexity of Q-Learning

Changxiao Cai
ECE, Princeton University

Gen Li Tsinghua EE

Yuxin Chen Princeton ECE

Yuantao Gu Tsinghua EE

Yuting Wei CMU Stats

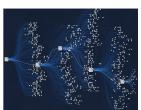
Yuejie Chi CMU ECE

G. Li, C Cai, Y. Chen, Y. Gu, Y. Wei, and Y. Chi, "Tightening the Dependence on Horizon in the Sample Complexity of Q-Learning," ICML2021

Sample-efficient reinforcement learning (RL)

In RL, an agent learns by interacting with an environment

• Collecting data samples might be expensive or time-consuming



Sample-efficient reinforcement learning (RL)

In RL, an agent learns by interacting with an environment

• Collecting data samples might be expensive or time-consuming

Calls for in-depth understanding about sample efficiency of RL algorithms

Q-learning: a classical model-free algorithm

γ -discounted infinite horizon MDP

- Q*: optimal action-value function
- S: state space; A: action space
- $r \in [0,1]$: reward function

Chris Watkins

Peter Dayan

Stochastic approximation for solving Bellman equation $Q = \mathcal{T}(Q)$

Q-learning: a classical model-free algorithm

γ -discounted infinite horizon MDP

- Q*: optimal action-value function
- ullet ${\cal S}$: state space; ${\cal A}$: action space
- $r \in [0,1]$: reward function

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation
$$Q = \mathcal{T}(Q)$$

$$Q_{t+1}(s,a) = (1 - \eta_t)Q_t(s,a) + \eta_t \mathcal{T}_t(Q_t)(s,a), \quad t \ge 0$$

$$\begin{split} \mathcal{T}_t(Q)(s, a) &:= r(s, a) + \gamma \max_{a'} Q(s'_t, a') \\ \mathcal{T}(Q)(s, a) &:= r(s, a) + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot \mid s, a)} \left[\max_{a'} Q(s', a') \right] \end{split}$$

Q-learning: a classical model-free algorithm

γ -discounted infinite horizon MDP

- Q*: optimal action-value function
- ullet ${\cal S}$: state space; ${\cal A}$: action space
- $r \in [0,1]$: reward function

Chris Watkins

Peter Dayan

Synchronous setting: in every iteration, draw a sample transition for each state-action pair, and update all state-action pairs at once

What is sample complexity of synchronous Q-learning?

A highly incomplete list of prior work

- Watkins, Dayan '92
- Tsitsiklis '94
- Jaakkola, Jordan, Singh '94
- Szepesvári '98
- Kearns, Singh '99
- Borkar, Meyn '00
- Even-Dar, Mansour '03
- Beck, Srikant '12
- Jin, Allen-Zhu, Bubeck, Jordan '18
- Shah, Xie'18
- Lee, He '18
- Wainwright '19
- Chen, Zhang, Doan, Maguluri, Clarke '19
- Yang, Wang'19
- Du, Lee, Mahajan, Wang '20
- Chen, Maguluri, Shakkottai, Shanmugam '20
- Qu, Wierman '20
- Devraj, Meyn '20
- Weng, Gupta, He, Ying, Srikant '20

• ...

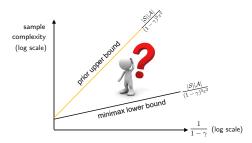
Prior art: achievability

Question: how many samples are needed to ensure $\|\widehat{Q} - Q^{\star}\|_{\infty} \leq \varepsilon$?

Prior art: achievability

Question: how many samples are needed to ensure $\|\widehat{Q} - Q^{\star}\|_{\infty} \leq \varepsilon$?

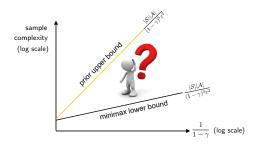
paper	sample complexity
Even-Dar & Mansour '03	$2^{\frac{1}{1-\gamma}} \frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^4 \varepsilon^2}$
Beck & Srikant '12	$\frac{ \mathcal{S} ^2 \mathcal{A} ^2}{(1-\gamma)^5\varepsilon^2}$
Wainwright '19	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^5\varepsilon^2}$
Chen et al. '20	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^5\varepsilon^2}$



Prior art: achievability

Question: how many samples are needed to ensure $\|\widehat{Q} - Q^{\star}\|_{\infty} \leq \varepsilon$?

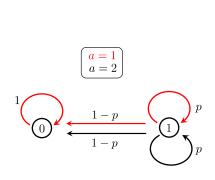
paper	sample complexity
Even-Dar & Mansour '03	$2^{\frac{1}{1-\gamma}} \frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^4 \varepsilon^2}$
Beck & Srikant '12	$\frac{ \mathcal{S} ^2 \mathcal{A} ^2}{(1-\gamma)^5\varepsilon^2}$
Wainwright '19	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^5\varepsilon^2}$
Chen et al. '20	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^5\varepsilon^2}$

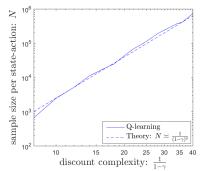


All prior results require sample size of at least $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^5\varepsilon^2}$!

Conjecture: Wainwright '19

Numerical evidence: $\frac{|S||A|}{(1-\gamma)^4 \varepsilon^2}$ samples seem sufficient . . .





Main result: sharpened upper bound

Theorem 1 (Li, Cai, Chen, Gu, Wei, Chi'21)

For any $0<\varepsilon\leq 1$, sample complexity of sync Q-learning to yield $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ is at most (up to log factor)

$$\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}$$

ullet Improves dependency on effective horizon $\frac{1}{1-\gamma}$

Main result: sharpened upper bound

Theorem 1 (Li, Cai, Chen, Gu, Wei, Chi'21)

For any $0<\varepsilon\leq 1$, sample complexity of sync Q-learning to yield $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ is at most (up to log factor)

$$\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}$$

- \bullet Improves dependency on effective horizon $\frac{1}{1-\gamma}$
- Holds for both constant and rescaled linear learning rates

Main result: matching lower bound

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi'21)

For any $0<\varepsilon\leq 1$, there exist an MDP s.t. sample complexity of sync Q-learning to yield $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ is at least (up to log factor)

$$\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}$$

• Tight algorithm-dependent lower bound

Main result: matching lower bound

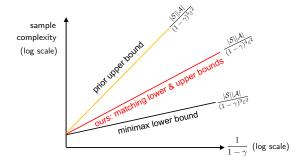
Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi'21)

For any $0<\varepsilon\leq 1$, there exist an MDP s.t. sample complexity of sync Q-learning to yield $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ is at least (up to log factor)

$$\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}$$

- Tight algorithm-dependent lower bound
- Holds for both constant and rescaled linear learning rates

Takeaway message



- **Sharpens** sample complexity of sync Q-learning: $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4 \varepsilon^2}$
- Uncovers that vanilla Q-learning is NOT minimax optimal
 - minimax lower bound: $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3 \varepsilon^2}$ (Azar et al '13)

Thanks for your attention!

- G. Li, C Cai, Y. Chen, Y. Gu, Y. Wei, and Y. Chi, "Tightening the Dependence on Horizon in the Sample Complexity of Q-Learning," ICML2021
- G. Li, C Cai, Y. Chen, Y. Gu, Y. Wei, and Y. Chi, "Is Q-learning minimax optimal? a tight sample complexity analysis," arXiv:2102.06548