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Sample-efficient reinforcement learning (RL)

In RL, an agent learns by interacting with an environment

e Collecting data samples might be expensive or time-consuming
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Sample-efficient reinforcement learning (RL)

In RL, an agent learns by interacting with an environment

e Collecting data samples might be expensive or time-consuming

Calls for in-depth understanding about sample efficiency of RL
algorithms
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Q-learning: a classical model-free algorithm

~-discounted infinite horizon MDP

e Q*: optimal action-value function

e S : state space; A: action space

e r € [0,1]: reward function Chris Watkins ~ Peter Dayan

Stochastic approximation for solving Bellman equation Q = 7(Q)
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e Q*: optimal action-value function

e S : state space; A: action space

e r € [0,1]: reward function Chris Watkins ~ Peter Dayan

Stochastic approximation for solving Bellman equation @ = 7(Q)
Qi1(s,a) = (L =m)Qu(s,a) + mTi(Q)(s,a), =0

Ti(Q)(s, a) :=r(s,a) + ymax Q(s}, a’)

T(Q)(s,a) :=17(s,a) +7 E [max Q(s, a’)]

snP(ls,a) b o
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Q-learning: a classical model-free algorithm

-
~-discounted infinite horizon MDP ' -
e Q*: optimal action-value function
e S : state space; A: action space ‘

e r € [0,1]: reward function Chris Watkins ~ Peter Dayan

Synchronous setting: in every iteration, draw a sample transition for
each state-action pair, and update all state-action pairs at once

What is sample complexity of synchronous Q-learning?
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Prior art: achievability

Question: how many samples are needed to ensure H@ — Qoo < €7
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All prior results require sample size of at least A=)5e
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Conjecture: Wainwright '19

Numerical evidence:
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Main result: sharpened upper bound

Theorem 1 (Li, Cai, Chen, Gu, Wei, Chi’21)

For any 0 <e <1, sample complexity of sync Q-learning to yield
|Q — Q*||co < € is at most (up to log factor)

S| Al
(1 —~y)te?

e Improves dependency on effective horizon ﬁ
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e Holds for both constant and rescaled linear learning rates
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Main result: matching lower bound

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi’21)

For any 0 < e <1, there exist an MDP s.t. sample complexity of sync
Q-learning to yield ||Q — Q*||c < € is at least (up to log factor)

S| Al
(1 —~y)te?

e Tight algorithm-dependent lower bound
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Main result: matching lower bound

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi’21)

For any 0 < e <1, there exist an MDP s.t. sample complexity of sync
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Takeaway message

A
sample
complexity
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e Sharpens sample complexity of sync Q-learning: (ﬂﬂ%

e Uncovers that vanilla Q-learning is NOT minimax optimal

— minimax lower bound: % (Azar et al '13)
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Thanks for your attention!
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